BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1116 related articles for article (PubMed ID: 25342630)

  • 1. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
    Sabharwal SS; Schumacker PT
    Nat Rev Cancer; 2014 Nov; 14(11):709-21. PubMed ID: 25342630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.
    Tian H; Gao Z; Wang G; Li H; Zheng J
    Tumour Biol; 2016 Jan; 37(1):141-50. PubMed ID: 26566628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ROS, autophagy, mitochondria and cancer: Ras, the hidden master?
    Bellot GL; Liu D; Pervaiz S
    Mitochondrion; 2013 May; 13(3):155-62. PubMed ID: 22750269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria and cancer.
    Wallace DC
    Nat Rev Cancer; 2012 Oct; 12(10):685-98. PubMed ID: 23001348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA and carcinogenesis (review).
    Grzybowska-Szatkowska L; Slaska B
    Mol Med Rep; 2012 Nov; 6(5):923-30. PubMed ID: 22895648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.
    Kalyanaraman B; Cheng G; Hardy M; Ouari O; Bennett B; Zielonka J
    Redox Biol; 2018 May; 15():347-362. PubMed ID: 29306792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis.
    Park JS; Sharma LK; Li H; Xiang R; Holstein D; Wu J; Lechleiter J; Naylor SL; Deng JJ; Lu J; Bai Y
    Hum Mol Genet; 2009 May; 18(9):1578-89. PubMed ID: 19208652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
    Yang Y; Karakhanova S; Hartwig W; D'Haese JG; Philippov PP; Werner J; Bazhin AV
    J Cell Physiol; 2016 Dec; 231(12):2570-81. PubMed ID: 26895995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ROS control of cancer.
    Idelchik MDPS; Begley U; Begley TJ; Melendez JA
    Semin Cancer Biol; 2017 Dec; 47():57-66. PubMed ID: 28445781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species: a breath of life or death?
    Fruehauf JP; Meyskens FL
    Clin Cancer Res; 2007 Feb; 13(3):789-94. PubMed ID: 17289868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer.
    Verschoor ML; Wilson LA; Singh G
    Can J Physiol Pharmacol; 2010 Mar; 88(3):204-19. PubMed ID: 20393586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Synthetic Lethal Interaction between Glutathione Synthesis and Mitochondrial Reactive Oxygen Species Provides a Tumor-Specific Vulnerability Dependent on STAT3.
    Garama DJ; Harris TJ; White CL; Rossello FJ; Abdul-Hay M; Gough DJ; Levy DE
    Mol Cell Biol; 2015 Nov; 35(21):3646-56. PubMed ID: 26283727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial reactive oxygen species production and elimination.
    Nickel A; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2014 Aug; 73():26-33. PubMed ID: 24657720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction and cancer metastasis.
    Chen EI
    J Bioenerg Biomembr; 2012 Dec; 44(6):619-22. PubMed ID: 22892817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial ROS and cancer drug resistance: Implications for therapy.
    Okon IS; Zou MH
    Pharmacol Res; 2015 Oct; 100():170-4. PubMed ID: 26276086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria and cancer: past, present, and future.
    Verschoor ML; Ungard R; Harbottle A; Jakupciak JP; Parr RL; Singh G
    Biomed Res Int; 2013; 2013():612369. PubMed ID: 23509753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.