These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25342998)

  • 21. Hydrolytic cleavage by a group I intron ribozyme is dependent on RNA structures not important for splicing.
    Haugen P; Andreassen M; Birgisdottir AB; Johansen S
    Eur J Biochem; 2004 Mar; 271(5):1015-24. PubMed ID: 15009213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulation of Stable Full-Length Circular Group I Intron RNAs during Heat-Shock.
    Andersen KL; Beckert B; Masquida B; Johansen SD; Nielsen H
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27809244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes.
    Fiskaa T; Lundblad EW; Henriksen JR; Johansen SD; Einvik C
    FEBS J; 2006 Jun; 273(12):2789-800. PubMed ID: 16817905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Group I twintrons: genetic elements in myxomycete and schizopyrenid amoeboflagellate ribosomal DNAs.
    Einvik C; Elde M; Johansen S
    J Biotechnol; 1998 Sep; 64(1):63-74. PubMed ID: 9823659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flanking sequences with an essential role in hydrolysis of a self-cleaving group I-like ribozyme.
    Einvik C; Nielsen H; Nour R; Johansen S
    Nucleic Acids Res; 2000 May; 28(10):2194-200. PubMed ID: 10773091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes.
    Haugen P; Coucheron DH; Rønning SB; Haugli K; Johansen S
    J Eukaryot Microbiol; 2003; 50(4):283-92. PubMed ID: 15132172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Group II introns: structure and catalytic versatility of large natural ribozymes.
    Lehmann K; Schmidt U
    Crit Rev Biochem Mol Biol; 2003; 38(3):249-303. PubMed ID: 12870716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transitions between the steps of forward and reverse splicing of group IIC introns.
    Smathers CM; Robart AR
    RNA; 2020 May; 26(5):664-673. PubMed ID: 32127385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.
    Monachello D; Michel F; Costa M
    RNA; 2016 Mar; 22(3):443-55. PubMed ID: 26769855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo expression of a group I intron HEG from the antisense strand of Didymium ribosomal DNA.
    Johansen SD; Vader A; Sjøttem E; Nielsen H
    RNA Biol; 2006 Oct; 3(4):157-62. PubMed ID: 17361110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element.
    Chillón I; Molina-Sánchez MD; Fedorova O; García-Rodríguez FM; Martínez-Abarca F; Toro N
    RNA; 2014 Dec; 20(12):2000-10. PubMed ID: 25336586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A natural fast-cleaving branching ribozyme from the amoeboflagellate Naegleria pringsheimi.
    Tang Y; Nielsen H; Birgisdottir AB; Johansen S
    RNA Biol; 2011; 8(6):997-1004. PubMed ID: 21941120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.
    Martínez-Rodríguez L; García-Rodríguez FM; Molina-Sánchez MD; Toro N; Martínez-Abarca F
    RNA Biol; 2014; 11(8):1061-71. PubMed ID: 25482895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of
    Chen CC; Han J; Chinn CA; Rounds JS; Li X; Nikan M; Myszka M; Tong L; Passalacqua LFM; Bredy T; Wood MA; Luptak A
    Elife; 2024 Feb; 13():. PubMed ID: 38319152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the self-splicing products of a mobile intron from the nuclear rDNA of Physarum polycephalum.
    Ruoff B; Johansen S; Vogt VM
    Nucleic Acids Res; 1992 Nov; 20(22):5899-906. PubMed ID: 1461722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing.
    Peebles CL; Belcher SM; Zhang M; Dietrich RC; Perlman PS
    J Biol Chem; 1993 Jun; 268(16):11929-38. PubMed ID: 8389367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets.
    Xiang Q; Qin PZ; Michels WJ; Freeland K; Pyle AM
    Biochemistry; 1998 Mar; 37(11):3839-49. PubMed ID: 9521704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes.
    Guha TK; Hausner G
    Methods Mol Biol; 2017; 1498():135-152. PubMed ID: 27709573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lariat capping as a tool to manipulate the 5' end of individual yeast mRNA species in vivo.
    Krogh N; Pietschmann M; Schmid M; Jensen TH; Nielsen H
    RNA; 2017 May; 23(5):683-695. PubMed ID: 28159804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships.
    Michels WJ; Pyle AM
    Biochemistry; 1995 Mar; 34(9):2965-77. PubMed ID: 7893710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.