These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25342998)

  • 41. Group I-like ribozymes with a novel core organization perform obligate sequential hydrolytic cleavages at two processing sites.
    Einvik C; Nielsen H; Westhof E; Michel F; Johansen S
    RNA; 1998 May; 4(5):530-41. PubMed ID: 9582095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recurrent insertion of 5'-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs.
    Li CF; Costa M; Bassi G; Lai YK; Michel F
    RNA; 2011 Jul; 17(7):1321-35. PubMed ID: 21613530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutations at the lariat acceptor site allow self-splicing of a group II intron without lariat formation.
    van der Veen R; Kwakman JH; Grivell LA
    EMBO J; 1987 Dec; 6(12):3827-31. PubMed ID: 2828039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trans-splicing with the group I intron ribozyme from Azoarcus.
    Dolan GF; Müller UF
    RNA; 2014 Feb; 20(2):202-13. PubMed ID: 24344321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trans-splicing of a mutated glycosylasparaginase mRNA sequence by a group I ribozyme deficient in hydrolysis.
    Lundblad EW; Haugen P; Johansen SD
    Eur J Biochem; 2004 Dec; 271(23-24):4932-8. PubMed ID: 15606781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of a Lariat Capping Ribozyme to Study Cap Function In Vivo.
    Pietschmann M; Tempel G; Halladjian M; Krogh N; Nielsen H
    Methods Mol Biol; 2021; 2167():271-285. PubMed ID: 32712925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Group II introns and expression of conjugative transfer functions in lactic acid bacteria.
    Dunny GM; McKay LL
    Antonie Van Leeuwenhoek; 1999; 76(1-4):77-88. PubMed ID: 10532373
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.
    Lehnert V; Jaeger L; Michel F; Westhof E
    Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core.
    Testa SM; Haidaris CG; Gigliotti F; Turner DH
    Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA polymerization catalysed by a group II intron RNA in vitro.
    Hetzer M; Schweyen RJ; Mueller MW
    Nucleic Acids Res; 1997 May; 25(9):1825-9. PubMed ID: 9108167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of introns in the archaeal world.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4782-7. PubMed ID: 21383132
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 2'-Hydroxyl groups important for exon polymerization and reverse exon ligation reactions catalyzed by a group I ribozyme.
    Berzal-Herranz A; Chowrira BM; Polsenberg JF; Burke JM
    Biochemistry; 1993 Sep; 32(35):8981-6. PubMed ID: 8369271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
    Gleitsman KR; Herschlag DH
    RNA; 2014 Nov; 20(11):1732-46. PubMed ID: 25246656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Group II introns: mobile ribozymes that invade DNA.
    Lambowitz AM; Zimmerly S
    Cold Spring Harb Perspect Biol; 2011 Aug; 3(8):a003616. PubMed ID: 20463000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing.
    Mohr G; Kang SY; Park SK; Qin Y; Grohman J; Yao J; Stamos JL; Lambowitz AM
    J Mol Biol; 2018 Aug; 430(17):2760-2783. PubMed ID: 29913158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nuclear Group I introns with homing endonuclease genes in Acanthamoeba genotype T4.
    Corsaro D; Venditti D
    Eur J Protistol; 2018 Oct; 66():26-35. PubMed ID: 30071371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Invasion of protein coding genes by green algal ribosomal group I introns.
    McManus HA; Lewis LA; Fučíková K; Haugen P
    Mol Phylogenet Evol; 2012 Jan; 62(1):109-16. PubMed ID: 22056605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.