These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25343042)

  • 21. Remediation of copper contaminated sediments by granular activated carbon-supported titanium dioxide nanoparticles: Mechanism study and effect on enzyme activities.
    Yin Z; Song L; Song H; Hui K; Lin Z; Wang Q; Xuan L; Wang Z; Gao W
    Sci Total Environ; 2020 Nov; 741():139962. PubMed ID: 32563130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic degradation of carbofuran by TiO2-coated activated carbon: Model for kinetic, electrical energy per order and economic analysis.
    Vishnuganth MA; Remya N; Kumar M; Selvaraju N
    J Environ Manage; 2016 Oct; 181():201-207. PubMed ID: 27353370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO
    Ghorbani Shahna F; Bahrami A; Alimohammadi I; Yarahmadi R; Jaleh B; Gandomi M; Ebrahimi H; Ad-Din Abedi K
    J Hazard Mater; 2017 Feb; 324(Pt B):544-553. PubMed ID: 27887812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of low-concentration BTX in air using a combined plasma catalysis system.
    Fan X; Zhu TL; Wang MY; Li XM
    Chemosphere; 2009 Jun; 75(10):1301-6. PubMed ID: 19375149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration.
    Liu R; Song H; Li B; Li X; Zhu T
    Chemosphere; 2021 Jan; 263():127893. PubMed ID: 32835971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma.
    Guo T; Li X; Li J; Peng Z; Xu L; Dong J; Cheng P; Zhou Z
    Chemosphere; 2018 Mar; 194():139-146. PubMed ID: 29202266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant.
    Kibanova D; Cervini-Silva J; Destaillats H
    Environ Sci Technol; 2009 Mar; 43(5):1500-6. PubMed ID: 19350926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic oxidation of VOCs over Mn/TiO
    Shu Y; Xu Y; Huang H; Ji J; Liang S; Wu M; Leung DYC
    Chemosphere; 2018 Oct; 208():550-558. PubMed ID: 29890493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced oxidation of naphthalene using plasma activation of TiO
    Wu Z; Zhu Z; Hao X; Zhou W; Han J; Tang X; Yao S; Zhang X
    J Hazard Mater; 2018 Apr; 347():48-57. PubMed ID: 29289765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solar-Enhanced Plasma-Catalytic Oxidation of Toluene over a Bifunctional Graphene Fin Foam Decorated with Nanofin-like MnO
    Bo Z; Yang S; Kong J; Zhu J; Wang Y; Yang H; Li X; Yan J; Cen K; Tu X
    ACS Catal; 2020 Apr; 10(7):4420-4432. PubMed ID: 32296596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The post plasma-catalytic decomposition of toluene over K-modified OMS-2 catalysts at ambient temperature: Effect of K
    Jiang N; Li X; Kong X; Zhao Y; Li J; Shang K; Lu N; Wu Y
    J Colloid Interface Sci; 2021 Sep; 598():519-529. PubMed ID: 33951548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photocatalytic effect of addition of TiO
    Basso A; Battisti AP; Moreira RFPM; José HJ
    Environ Technol; 2020 May; 41(12):1568-1579. PubMed ID: 30372665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review.
    Mu Y; Williams PT
    Chemosphere; 2022 Dec; 308(Pt 3):136481. PubMed ID: 36165927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of proton transfer reaction mass spectrometry for the assessment of toluene removal in a nonthermal plasma reactor.
    Guo T; Peng Z; Li X; Zhu H; Xu L; Dong J; Feng J; Cheng P; Zhou Z
    J Mass Spectrom; 2018 Nov; 53(11):1126-1134. PubMed ID: 30209843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.
    Yang S; Li L; Xiao T; Zhang J; Shao X
    Environ Technol; 2017 Mar; 38(5):598-605. PubMed ID: 27383740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.
    Tang S; Yuan D; Zhang Q; Liu Y; Zhang Q; Liu Z; Huang H
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18800-8. PubMed ID: 27316651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Organic Matter Removal and Membrane Fouling Control of Secondary Effluents Using a Combined Nanofiltration Process].
    Fan KW; Li X; Yang YL; Zhou ZW
    Huan Jing Ke Xue; 2019 Aug; 40(8):3626-3632. PubMed ID: 31854769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.
    Liang WJ; Ma L; Liu H; Li J
    Chemosphere; 2013 Aug; 92(10):1390-5. PubMed ID: 23773445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).
    Balanay JA; Crawford SA; Lungu CT
    J Occup Environ Hyg; 2011 Oct; 8(10):573-9. PubMed ID: 21936696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.