BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25343218)

  • 1. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation.
    Budhathoki-Uprety J; Jena PV; Roxbury D; Heller DA
    J Am Chem Soc; 2014 Nov; 136(44):15545-50. PubMed ID: 25343218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Chirality Near-Infrared Carbon Nanotube Sub-Cellular Imaging and FRET Probes.
    Langenbacher R; Budhathoki-Uprety J; Jena PV; Roxbury D; Streit J; Zheng M; Heller DA
    Nano Lett; 2021 Aug; 21(15):6441-6448. PubMed ID: 34296885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.
    Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical Pathway.
    Budhathoki-Uprety J; Langenbacher RE; Jena PV; Roxbury D; Heller DA
    ACS Nano; 2017 Apr; 11(4):3875-3882. PubMed ID: 28398031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent.
    Jena PV; Safaee MM; Heller DA; Roxbury D
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21397-21405. PubMed ID: 28573867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport.
    Hartmann NF; Pramanik R; Dowgiallo AM; Ihly R; Blackburn JL; Doorn SK
    ACS Nano; 2016 Dec; 10(12):11449-11458. PubMed ID: 27936574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Sensitive photoinduced energy transfer from bacteriorhodopsin to single-walled carbon nanotubes in SWNT-bR hybrids.
    El Hadj K; Bertoncini P; Chauvet O
    ACS Nano; 2013 Oct; 7(10):8743-52. PubMed ID: 24011351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton energy transfer in pairs of single-walled carbon nanotubes.
    Qian H; Georgi C; Anderson N; Green AA; Hersam MC; Novotny L; Hartschuh A
    Nano Lett; 2008 May; 8(5):1363-7. PubMed ID: 18366189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendron-Polymer Hybrids as Tailorable Responsive Coronae of Single-Walled Carbon Nanotubes.
    Wulf V; Slor G; Rathee P; Amir RJ; Bisker G
    ACS Nano; 2021 Dec; 15(12):20539-20549. PubMed ID: 34878763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M
    ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.
    Liu K; Hong X; Choi S; Jin C; Capaz RB; Kim J; Wang W; Bai X; Louie SG; Wang E; Wang F
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7564-9. PubMed ID: 24821815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer cloaking modulates the carbon nanotube protein corona and delivery into cancer cells.
    Budhathoki-Uprety J; Harvey JD; Isaac E; Williams RM; Galassi TV; Langenbacher RE; Heller DA
    J Mater Chem B; 2017 Aug; 5(32):6637-6644. PubMed ID: 32264426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks.
    Arias DH; Sulas-Kern DB; Hart SM; Kang HS; Hao J; Ihly R; Johnson JC; Blackburn JL; Ferguson AJ
    Nanoscale; 2019 Nov; 11(44):21196-21206. PubMed ID: 31663591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidomain peptides as single-walled carbon nanotube surfactants in cell culture.
    Bakota EL; Aulisa L; Tsyboulski DA; Weisman RB; Hartgerink JD
    Biomacromolecules; 2009 Aug; 10(8):2201-6. PubMed ID: 19603785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tip-enhanced near-field optical microscopy of carbon nanotubes.
    Hartschuh A; Qian H; Georgi C; Böhmler M; Novotny L
    Anal Bioanal Chem; 2009 Aug; 394(7):1787-95. PubMed ID: 19455312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels.
    Wulf V; Bisker G
    Nano Lett; 2022 Nov; 22(22):9205-9214. PubMed ID: 36259520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.
    Boyer PD; Ganesh S; Qin Z; Holt BD; Buehler MJ; Islam MF; Dahl KN
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3524-34. PubMed ID: 26783632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Charge Transfer with Single-Walled Carbon Nanotubes Upon Harvesting the Low Energy Part of the Solar Spectrum.
    Menon A; Slominskii YL; Joseph J; Dimitriev OP; Guldi DM
    Small; 2020 Feb; 16(8):e1906745. PubMed ID: 32003927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes.
    Jeng ES; Moll AE; Roy AC; Gastala JB; Strano MS
    Nano Lett; 2006 Mar; 6(3):371-5. PubMed ID: 16522025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.