These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25343527)

  • 1. Fast drying and film formation of latex dispersions studied with FTIR spectroscopic imaging.
    Kimber JA; Gerst M; Kazarian SG
    Langmuir; 2014 Nov; 30(45):13588-95. PubMed ID: 25343527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Surfactant Distributions in Pressure-Sensitive Adhesive Films Dried from Dispersion under Lab-Scale and Industrial Drying Conditions.
    Baesch S; Siebel D; Schmidt-Hansberg B; Eichholz C; Gerst M; Scharfer P; Schabel W
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8118-28. PubMed ID: 26953641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of film thickness and particle size on cracking stresses in drying latex films.
    Yow HN; Goikoetxea M; Goehring L; Routh AF
    J Colloid Interface Sci; 2010 Dec; 352(2):542-8. PubMed ID: 20851402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cracking in drying latex films.
    Tirumkudulu MS; Russel WB
    Langmuir; 2005 May; 21(11):4938-48. PubMed ID: 15896034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(methyl methacrylate-co-ethyl acrylate) latex particles with poly(ethylene glycol) grafts: structure and film formation.
    Schantz S; Carlsson HT; Andersson T; Erkselius S; Larsson A; Karlsson OJ
    Langmuir; 2007 Mar; 23(7):3590-602. PubMed ID: 17335252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating particle deformation with water concentration profiles during latex film formation: reasons that softer latex films take longer to dry.
    Carter FT; Kowalczyk RM; Millichamp I; Chainey M; Keddie JL
    Langmuir; 2014 Aug; 30(32):9672-81. PubMed ID: 25058916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature and relative humidity dependency of film formation of polymeric latex dispersions.
    Chen X; Fischer S; Men Y
    Langmuir; 2011 Nov; 27(21):12807-14. PubMed ID: 21942473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Film formation from monodisperse acrylic latices 5. Drying and ageing in coalescing agent containing latex films.
    Zohrehvand S; Te Nijenhuis K
    J Colloid Interface Sci; 2005 Aug; 288(1):75-82. PubMed ID: 15927564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.
    Susarla R; Sievens-Figueroa L; Bhakay A; Shen Y; Jerez-Rozo JI; Engen W; Khusid B; Bilgili E; Romañach RJ; Morris KR; Michniak-Kohn B; Davé RN
    Int J Pharm; 2013 Oct; 455(1-2):93-103. PubMed ID: 23911341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films.
    Schroeder WF; Liu Y; Tomba JP; Soleimani M; Lau W; Winnik MA
    J Phys Chem B; 2010 Mar; 114(9):3085-94. PubMed ID: 20163098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desiccation kinetics and biothermodynamics of glass forming trehalose solutions in thin films.
    He X; Fowler A; Menze M; Hand S; Toner M
    Ann Biomed Eng; 2008 Aug; 36(8):1428-39. PubMed ID: 18500553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addition of halloysite nanotubes prevents cracking in drying latex films.
    Qiao J; Adams J; Johannsmann D
    Langmuir; 2012 Jun; 28(23):8674-80. PubMed ID: 22616787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thinning of drying latex films due to surfactant.
    Gundabala VR; Routh AF
    J Colloid Interface Sci; 2006 Nov; 303(1):306-14. PubMed ID: 16876180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drying dip-coated colloidal films.
    Li J; Cabane B; Sztucki M; Gummel J; Goehring L
    Langmuir; 2012 Jan; 28(1):200-8. PubMed ID: 22053849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cracking of drying latex films: an ESEM experiment.
    Dragnevski KI; Routh AF; Murray MW; Donald AM
    Langmuir; 2010 Jun; 26(11):7747-51. PubMed ID: 20136103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.
    Lestage DJ; Urban MW
    Langmuir; 2004 Jul; 20(15):6443-9. PubMed ID: 15248735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the microstructure and permeability of thin multilayer latex biocatalytic coatings containing E. coli.
    Lyngberg OK; Ng CP; Thiagarajan V; Scriven LE; Flickinger MC
    Biotechnol Prog; 2001; 17(6):1169-79. PubMed ID: 11735456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of Mammalian cells.
    Chen B; Fowler A; Bhowmick S
    J Biomech Eng; 2006 Jun; 128(3):335-46. PubMed ID: 16706583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cracking in drying colloidal films of flocculated dispersions.
    Singh KB; Bhosale LR; Tirumkudulu MS
    Langmuir; 2009 Apr; 25(8):4284-7. PubMed ID: 19323451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Routh-Russel deformation map to achieve film formation of a latex with a high glass transition temperature.
    Gonzalez E; Paulis M; Barandiaran MJ; Keddie JL
    Langmuir; 2013 Feb; 29(6):2044-53. PubMed ID: 23327465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.