BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 25343823)

  • 1. Maladaptive proximal tubule repair: cell cycle arrest.
    Bonventre JV
    Nephron Clin Pract; 2014; 127(1-4):61-4. PubMed ID: 25343823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis.
    Grgic I; Campanholle G; Bijol V; Wang C; Sabbisetti VS; Ichimura T; Humphreys BD; Bonventre JV
    Kidney Int; 2012 Jul; 82(2):172-83. PubMed ID: 22437410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis.
    Takaori K; Nakamura J; Yamamoto S; Nakata H; Sato Y; Takase M; Nameta M; Yamamoto T; Economides AN; Kohno K; Haga H; Sharma K; Yanagita M
    J Am Soc Nephrol; 2016 Aug; 27(8):2393-406. PubMed ID: 26701981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury.
    Sekine M; Monkawa T; Morizane R; Matsuoka K; Taya C; Akita Y; Joh K; Itoh H; Hayashi M; Kikkawa Y; Kohno K; Suzuki A; Yonekawa H
    Transgenic Res; 2012 Feb; 21(1):51-62. PubMed ID: 21431867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury.
    Nakamura J; Sato Y; Kitai Y; Wajima S; Yamamoto S; Oguchi A; Yamada R; Kaneko K; Kondo M; Uchino E; Tsuchida J; Hirano K; Sharma K; Kohno K; Yanagita M
    Kidney Int; 2019 Mar; 95(3):526-539. PubMed ID: 30661714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelial Cell Cycle Behaviour in the Injured Kidney.
    Moonen L; D'Haese PC; Vervaet BA
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis.
    Lan R; Geng H; Polichnowski AJ; Singha PK; Saikumar P; McEwen DG; Griffin KA; Koesters R; Weinberg JM; Bidani AK; Kriz W; Venkatachalam MA
    Am J Physiol Renal Physiol; 2012 May; 302(9):F1210-23. PubMed ID: 22301622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation.
    Taguchi K; Elias BC; Sugahara S; Sant S; Freedman BS; Waikar SS; Pozzi A; Zent R; Harris RC; Parikh SM; Brooks CR
    J Clin Invest; 2022 Dec; 132(23):. PubMed ID: 36453545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal Tubule-Derived Amphiregulin Amplifies and Integrates Profibrotic EGF Receptor Signals in Kidney Fibrosis.
    Kefaloyianni E; Keerthi Raja MR; Schumacher J; Muthu ML; Krishnadoss V; Waikar SS; Herrlich A
    J Am Soc Nephrol; 2019 Dec; 30(12):2370-2383. PubMed ID: 31676723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute Kidney Injury to Chronic Kidney Disease Transition.
    Fiorentino M; Grandaliano G; Gesualdo L; Castellano G
    Contrib Nephrol; 2018; 193():45-54. PubMed ID: 29393158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis.
    Bonventre JV
    Kidney Int Suppl (2011); 2014 Nov; 4(1):39-44. PubMed ID: 26310195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the origin and limitations of kidney regeneration.
    Endo T; Nakamura J; Sato Y; Asada M; Yamada R; Takase M; Takaori K; Oguchi A; Iguchi T; Higashi AY; Ohbayashi T; Nakamura T; Muso E; Kimura T; Yanagita M
    J Pathol; 2015 Jun; 236(2):251-63. PubMed ID: 25664690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD.
    Ferenbach DA; Bonventre JV
    Nat Rev Nephrol; 2015 May; 11(5):264-76. PubMed ID: 25643664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Cycle Arrest as a Therapeutic Target of Acute Kidney Injury.
    Wang WG; Sun WX; Gao BS; Lian X; Zhou HL
    Curr Protein Pept Sci; 2017; 18(12):1224-1231. PubMed ID: 27634440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology of renal recovery: molecules, mechanisms, and pathways.
    Vincent IS; Okusa MD
    Nephron Clin Pract; 2014; 127(1-4):10-4. PubMed ID: 25343813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiology of AKI to CKD progression.
    Sato Y; Takahashi M; Yanagita M
    Semin Nephrol; 2020 Mar; 40(2):206-215. PubMed ID: 32303283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI.
    Lan R; Geng H; Singha PK; Saikumar P; Bottinger EP; Weinberg JM; Venkatachalam MA
    J Am Soc Nephrol; 2016 Nov; 27(11):3356-3367. PubMed ID: 27000065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin G1 and TASCC regulate kidney epithelial cell G
    Canaud G; Brooks CR; Kishi S; Taguchi K; Nishimura K; Magassa S; Scott A; Hsiao LL; Ichimura T; Terzi F; Yang L; Bonventre JV
    Sci Transl Med; 2019 Jan; 11(476):. PubMed ID: 30674655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy in acute kidney injury and repair.
    He L; Livingston MJ; Dong Z
    Nephron Clin Pract; 2014; 127(1-4):56-60. PubMed ID: 25343822
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Bradford STJ; Wu H; Kirita Y; Chen C; Malvin NP; Yoshimura Y; Muto Y; Humphreys BD
    Am J Physiol Renal Physiol; 2024 May; 326(5):F827-F838. PubMed ID: 38482555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.