BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25343840)

  • 21. Role of carbonic anhydrase in acute recovery following renal ischemia reperfusion injury.
    Nensén O; Hansell P; Palm F
    PLoS One; 2019; 14(8):e0220185. PubMed ID: 31465457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney.
    Legrand M; Mik EG; Johannes T; Payen D; Ince C
    Mol Med; 2008; 14(7-8):502-16. PubMed ID: 18488066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury.
    Redfors B; Bragadottir G; Sellgren J; Swärd K; Ricksten SE
    Intensive Care Med; 2011 Jan; 37(1):60-7. PubMed ID: 20949349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia.
    Lee CJ; Gardiner BS; Ngo JP; Kar S; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F218-F236. PubMed ID: 28404592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The renal microcirculation in sepsis.
    Ergin B; Kapucu A; Demirci-Tansel C; Ince C
    Nephrol Dial Transplant; 2015 Feb; 30(2):169-77. PubMed ID: 24848133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury?
    Lankadeva YR; Okazaki N; Evans RG; Bellomo R; May CN
    Semin Nephrol; 2019 Nov; 39(6):543-553. PubMed ID: 31836037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury.
    Arulkumaran N; Pollen S; Greco E; Courtneidge H; Hall AM; Duchen MR; Tam FWK; Unwin RJ; Singer M
    Crit Care Med; 2018 Apr; 46(4):e318-e325. PubMed ID: 29293148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury.
    Gomez H; Ince C; De Backer D; Pickkers P; Payen D; Hotchkiss J; Kellum JA
    Shock; 2014 Jan; 41(1):3-11. PubMed ID: 24346647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy and oxygen metabolism disorder during septic acute kidney injury.
    Yang RL; Wang XT; Liu DW; Liu SB
    Kidney Blood Press Res; 2014; 39(4):240-51. PubMed ID: 25171106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UCP2-dependent improvement of mitochondrial dynamics protects against acute kidney injury.
    Qin N; Cai T; Ke Q; Yuan Q; Luo J; Mao X; Jiang L; Cao H; Wen P; Zen K; Zhou Y; Yang J
    J Pathol; 2019 Mar; 247(3):392-405. PubMed ID: 30426490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acute renal failure is NOT an "acute renal success"--a clinical study on the renal oxygen supply/demand relationship in acute kidney injury.
    Redfors B; Bragadottir G; Sellgren J; Swärd K; Ricksten SE
    Crit Care Med; 2010 Aug; 38(8):1695-701. PubMed ID: 20512036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. miR-214 represses mitofusin-2 to promote renal tubular apoptosis in ischemic acute kidney injury.
    Yan Y; Ma Z; Zhu J; Zeng M; Liu H; Dong Z
    Am J Physiol Renal Physiol; 2020 Apr; 318(4):F878-F887. PubMed ID: 32003595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury.
    Luther T; Bülow-Anderberg S; Persson P; Franzén S; Skorup P; Wernerson A; Hultenby K; Palm F; Schiffer TA; Frithiof R
    Am J Physiol Renal Physiol; 2023 Jun; 324(6):F571-F580. PubMed ID: 37102685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Cardiopulmonary Bypass on Renal Perfusion, Filtration, and Oxygenation in Patients Undergoing Cardiac Surgery.
    Lannemyr L; Bragadottir G; Krumbholz V; Redfors B; Sellgren J; Ricksten SE
    Anesthesiology; 2017 Feb; 126(2):205-213. PubMed ID: 27906706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular adaptive changes in AKI: mitigating renal hypoxic injury.
    Heyman SN; Evans RG; Rosen S; Rosenberger C
    Nephrol Dial Transplant; 2012 May; 27(5):1721-8. PubMed ID: 22547749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes.
    Persson P; Hansell P; Palm F
    Am J Physiol Regul Integr Comp Physiol; 2012 Jun; 302(12):R1443-9. PubMed ID: 22552796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ischemic Renal Injury: Can Renal Anatomy and Associated Vascular Congestion Explain Why the Medulla and Not the Cortex Is Where the Trouble Starts?
    Ray SC; Mason J; O'Connor PM
    Semin Nephrol; 2019 Nov; 39(6):520-529. PubMed ID: 31836035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury.
    Jesinkey SR; Funk JA; Stallons LJ; Wills LP; Megyesi JK; Beeson CC; Schnellmann RG
    J Am Soc Nephrol; 2014 Jun; 25(6):1157-62. PubMed ID: 24511124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.
    Khatir DS; Pedersen M; Jespersen B; Buus NH
    Am J Kidney Dis; 2015 Sep; 66(3):402-11. PubMed ID: 25618188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.