These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25344091)

  • 1. Cervical spine injuries and flexibilities following axial impact with lateral eccentricity.
    Van Toen C; Street J; Oxland TR; Cripton PA
    Eur Spine J; 2015 Jan; 24(1):136-47. PubMed ID: 25344091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lateral eccentricity on failure loads, kinematics, and canal occlusions of the cervical spine in axial loading.
    Van Toen C; Melnyk AD; Street J; Oxland TR; Cripton PA
    J Biomech; 2014 Mar; 47(5):1164-72. PubMed ID: 24411098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traumatic instabilities of the cervical spine caused by high-speed axial compression in a human model. An in vitro biomechanical study.
    Zhu Q; Ouyang J; Lu W; Lu H; Li Z; Guo X; Zhong S
    Spine (Phila Pa 1976); 1999 Mar; 24(5):440-4. PubMed ID: 10084180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation.
    Cheng BC; Hafez MA; Cunningham B; Serhan H; Welch WC
    Spine J; 2008; 8(5):821-6. PubMed ID: 17981098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical assessment of soft-tissue damage in the cervical spine following a unilateral facet injury.
    Nadeau M; McLachlin SD; Bailey SI; Gurr KR; Dunning CE; Bailey CS
    J Bone Joint Surg Am; 2012 Nov; 94(21):e156. PubMed ID: 23138243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of two-level total disc replacement on cervical spine kinematics.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Dooris A; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E794-9. PubMed ID: 19829242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro flexibility of the cervical spine after ventral uncoforaminotomy. Laboratory investigation.
    Schmieder K; Kettner A; Brenke C; Harders A; Pechlivanis I; Wilke HJ
    J Neurosurg Spine; 2007 Nov; 7(5):537-41. PubMed ID: 17977196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontal impact causes ligamentous cervical spine injury.
    Pearson AM; Panjabi MM; Ivancic PC; Ito S; Cunningham BW; Rubin W; Gimenez SE
    Spine (Phila Pa 1976); 2005 Aug; 30(16):1852-8. PubMed ID: 16103855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whiplash injuries and the potential for mechanical instability.
    Panjabi MM; Nibu K; Cholewicki J
    Eur Spine J; 1998; 7(6):484-92. PubMed ID: 9883958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-displacement properties of the normal and injured lower cervical spine in vitro.
    Richter M; Wilke HJ; Kluger P; Claes L; Puhl W
    Eur Spine J; 2000 Apr; 9(2):104-8. PubMed ID: 10823425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side impact causes multiplanar cervical spine injuries.
    Maak TG; Ivancic PC; Tominaga Y; Panjabi MM
    J Trauma; 2007 Dec; 63(6):1296-307. PubMed ID: 18212653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Compression Applied Through Constrained Lateral Eccentricity on the Failure Mechanics and Flexibility of the Human Cervical Spine.
    Melnyk A; Whyte T; Thomson V; Marion T; Yamamoto S; Street J; Oxland TR; Cripton PA
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32451551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading.
    Anderst WJ; Donaldson WF; Lee JY; Kang JD
    J Biomech; 2015 May; 48(7):1286-93. PubMed ID: 25814180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cervical spine instability following axial compression injury: a biomechanical study.
    Ivancic PC
    Orthop Traumatol Surg Res; 2014 Feb; 100(1):127-33. PubMed ID: 24434364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplanar cervical spine injury due to head-turned rear impact.
    Panjabi MM; Ivancic PC; Maak TG; Tominaga Y; Rubin W
    Spine (Phila Pa 1976); 2006 Feb; 31(4):420-9. PubMed ID: 16481952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total motion generated in the unstable cervical spine during management of the typical trauma patient: a comparison of methods in a cadaver model.
    Prasarn ML; Horodyski M; Dubose D; Small J; Del Rossi G; Zhou H; Conrad BP; Rechtine GR
    Spine (Phila Pa 1976); 2012 May; 37(11):937-42. PubMed ID: 22576042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of end condition on spine segment biomechanics in compression with lateral eccentricity.
    Melnyk A; Whyte T; Van Toen C; Yamamoto S; Street J; Oxland TR; Cripton PA
    J Biomech; 2021 Nov; 128():110617. PubMed ID: 34628202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of the posterior osteoligamentous complex to subaxial cervical spine stability in relation to a unilateral facet injury.
    Rasoulinejad P; McLachlin SD; Bailey SI; Gurr KR; Bailey CS; Dunning CE
    Spine J; 2012 Jul; 12(7):590-5. PubMed ID: 22906620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.