These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25344171)

  • 1. Molecular instability induced by aluminum stress in Plantago species.
    Correia S; Matos M; Ferreira V; Martins N; Gonçalves S; Romano A; Pinto-Carnide O
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Aug; 770():105-11. PubMed ID: 25344171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in Al tolerance between Plantago algarbiensis and P. almogravensis reflect their ability to respond to oxidative stress.
    Martins N; Osório ML; Gonçalves S; Osório J; Romano A
    Biometals; 2013 Jun; 26(3):427-37. PubMed ID: 23563731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently.
    Grevenstuk T; Moing A; Maucourt M; Deborde C; Romano A
    Biometals; 2015 Dec; 28(6):997-1007. PubMed ID: 26433896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum inhibits root growth and induces hydrogen peroxide accumulation in Plantago algarbiensis and P. almogravensis seedlings.
    Martins N; Gonçalves S; Romano A
    Protoplasma; 2013 Dec; 250(6):1295-302. PubMed ID: 23702818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.
    Martins N; Gonçalves S; Andrade PB; Valentão P; Romano A
    Plant Sci; 2013 Jan; 198():1-6. PubMed ID: 23199681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media.
    Sekmen AH; Türkan I; Takio S
    Physiol Plant; 2007 Nov; 131(3):399-411. PubMed ID: 18251879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements.
    Branquinho C; Serrano HC; Pinto MJ; Martins-Loução MA
    Environ Pollut; 2007 Mar; 146(2):437-43. PubMed ID: 17046127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-tolerance to heavy metals in Plantago arenaria Waldst. & Kit.: adaptative versus constitutive characters.
    Remon E; Bouchardon JL; Faure O
    Chemosphere; 2007 Aug; 69(1):41-7. PubMed ID: 17568652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the tri-Al tricitrate complex in Plantago almogravensis by hydrophilic interaction LC with parallel ICP-MS and electrospray Orbitrap MS/MS detection.
    Grevenstuk T; Flis P; Ouerdane L; Lobinski R; Romano A
    Metallomics; 2013 Sep; 5(9):1285-93. PubMed ID: 23877102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and epigenetic instability of amplification-prone sequences of a novel B chromosome induced by tissue culture in Plantago lagopus L.
    Kour G; Kour B; Kaul S; Dhar MK
    Plant Cell Rep; 2009 Dec; 28(12):1857-67. PubMed ID: 19847437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle.
    Jaskowiak J; Tkaczyk O; Slota M; Kwasniewska J; Szarejko I
    PLoS One; 2018; 13(2):e0193156. PubMed ID: 29466444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does an Al-hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al?
    Serrano HC; Pinto MJ; Martins-Loução MA; Branquinho C
    Sci Total Environ; 2011 Sep; 409(19):3749-56. PubMed ID: 21774964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil.
    Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L
    J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.
    Wang P; Bi S; Ma L; Han W
    J Agric Food Chem; 2006 Dec; 54(26):10033-9. PubMed ID: 17177538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes.
    Huynh VB; Repellin A; Zuily-Fodil Y; Pham-Thi AT
    Physiol Plant; 2012 Nov; 146(3):272-84. PubMed ID: 22452575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium channel blockers protect against aluminium-induced DNA damage and block adaptive response to genotoxic stress in plant cells.
    Achary VM; Parinandi NL; Panda BB
    Mutat Res; 2013 Mar; 751(2):130-8. PubMed ID: 23313746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L.
    Achary VM; Parinandi NL; Panda BB
    Environ Mol Mutagen; 2012 Aug; 53(7):550-60. PubMed ID: 22865669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics of aluminum tolerance in plants.
    Zheng L; Lan P; Shen RF; Li WF
    Proteomics; 2014 Mar; 14(4-5):566-78. PubMed ID: 24339160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum.
    Naik D; Smith E; Cumming JR
    Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings.
    Cenkci S; Yildiz M; Ciğerci IH; Konuk M; Bozdağ A
    Chemosphere; 2009 Aug; 76(7):900-6. PubMed ID: 19477479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.