These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25344239)

  • 1. Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Jan; 81(1):320-31. PubMed ID: 25344239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Apr; 81(7):2554-61. PubMed ID: 25636846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics in Copy Numbers of Five Plasmids of a Dairy Lactococcus lactis Strain under Dairy-Related Conditions Including Near-Zero Growth Rates.
    van Mastrigt O; Lommers MMAN; de Vries YC; Abee T; Smid EJ
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
    Ercan O; Smid EJ; Kleerebezem M
    Environ Microbiol; 2013 Aug; 15(8):2319-32. PubMed ID: 23461598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.
    Larsen N; Moslehi-Jenabian S; Werner BB; Jensen ML; Garrigues C; Vogensen FK; Jespersen L
    Int J Food Microbiol; 2016 Jun; 226():5-12. PubMed ID: 27015296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.
    Ercan O; Bisschops MM; Overkamp W; Jørgensen TR; Ram AF; Smid EJ; Pronk JT; Kuipers OP; Daran-Lapujade P; Kleerebezem M
    Appl Environ Microbiol; 2015 Sep; 81(17):5662-70. PubMed ID: 26048933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates.
    van Mastrigt O; Abee T; Lillevang SK; Smid EJ
    Food Microbiol; 2018 Aug; 73():216-226. PubMed ID: 29526206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information.
    Dressaire C; Redon E; Gitton C; Loubière P; Monnet V; Cocaign-Bousquet M
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S18. PubMed ID: 21995707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363.
    Zomer AL; Buist G; Larsen R; Kok J; Kuipers OP
    J Bacteriol; 2007 Feb; 189(4):1366-81. PubMed ID: 17028270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation.
    Redon E; Loubiere P; Cocaign-Bousquet M
    J Bacteriol; 2005 May; 187(10):3589-92. PubMed ID: 15866950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses.
    Dressaire C; Redon E; Milhem H; Besse P; Loubière P; Cocaign-Bousquet M
    BMC Genomics; 2008 Jul; 9():343. PubMed ID: 18644113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.
    Linares DM; del Río B; Ladero V; Redruello B; Martín MC; Fernández M; Alvarez MA
    Int J Food Microbiol; 2013 Jul; 165(1):43-50. PubMed ID: 23688550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites.
    Lopez de Felipe F; Gaudu P
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1115-22. PubMed ID: 19214497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactococcus lactis metabolism and gene expression during growth on plant tissues.
    Golomb BL; Marco ML
    J Bacteriol; 2015 Jan; 197(2):371-81. PubMed ID: 25384484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.
    Lahtvee PJ; Adamberg K; Arike L; Nahku R; Aller K; Vilu R
    Microb Cell Fact; 2011 Feb; 10():12. PubMed ID: 21349178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic and transcriptomic adaptation of Lactococcus lactis subsp. lactis Biovar diacetylactis in response to autoacidification and temperature downshift in skim milk.
    Raynaud S; Perrin R; Cocaign-Bousquet M; Loubiere P
    Appl Environ Microbiol; 2005 Dec; 71(12):8016-23. PubMed ID: 16332781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The growth-survival trade-off is hard-wired in the Lactococcus lactis gene regulation network.
    Ercan O; den Besten HMW; Smid EJ; Kleerebezem M
    Environ Microbiol Rep; 2022 Aug; 14(4):632-636. PubMed ID: 35445553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.
    van der Meulen SB; de Jong A; Kok J
    RNA Biol; 2016; 13(3):353-66. PubMed ID: 26950529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.