These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 25344411)
1. Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays. Buescher EM; Moon J; Runkel A; Hake S; Dilkes BP G3 (Bethesda); 2014 Oct; 4(12):2297-306. PubMed ID: 25344411 [TBL] [Abstract][Full Text] [Related]
2. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Fowler JE; Freeling M Dev Genet; 1996; 18(3):198-222. PubMed ID: 8631155 [TBL] [Abstract][Full Text] [Related]
3. The Second Site Modifier, Anderson A; St Aubin B; Abraham-Juárez MJ; Leiboff S; Shen Z; Briggs S; Brunkard JO; Hake S Plant Cell; 2019 Aug; 31(8):1829-1844. PubMed ID: 31217219 [No Abstract] [Full Text] [Related]
4. The establishment of axial patterning in the maize leaf. Foster T; Hay A; Johnston R; Hake S Development; 2004 Aug; 131(16):3921-9. PubMed ID: 15253937 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a dominant mutation for the liguleless trait: Aegilops tauschii liguleless (Lg Dresvyannikova AE; Watanabe N; Muterko AF; Krasnikov AA; Goncharov NP; Dobrovolskaya OB BMC Plant Biol; 2019 Feb; 19(Suppl 1):55. PubMed ID: 30813900 [TBL] [Abstract][Full Text] [Related]
6. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Walsh J; Waters CA; Freeling M Genes Dev; 1998 Jan; 12(2):208-18. PubMed ID: 9490265 [TBL] [Abstract][Full Text] [Related]
7. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Harper L; Freeling M Genetics; 1996 Dec; 144(4):1871-82. PubMed ID: 8978070 [TBL] [Abstract][Full Text] [Related]
8. The liguleless-1 gene acts tissue specifically in maize leaf development. Becraft PW; Bongard-Pierce DK; Sylvester AW; Poethig RS; Freeling M Dev Biol; 1990 Sep; 141(1):220-32. PubMed ID: 2391003 [TBL] [Abstract][Full Text] [Related]
9. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Moon J; Candela H; Hake S Development; 2013 Jan; 140(2):405-12. PubMed ID: 23250214 [TBL] [Abstract][Full Text] [Related]
10. Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Becraft PW; Freeling M Plant Cell; 1991 Aug; 3(8):801-7. PubMed ID: 1820819 [TBL] [Abstract][Full Text] [Related]
11. Mosaic analysis of the dominant mutant, Gnarley1-R, reveals distinct lateral and transverse signaling pathways during maize leaf development. Foster T; Veit B; Hake S Development; 1999 Jan; 126(2):305-13. PubMed ID: 9847244 [TBL] [Abstract][Full Text] [Related]
12. Gene regulatory interactions at lateral organ boundaries in maize. Lewis MW; Bolduc N; Hake K; Htike Y; Hay A; Candela H; Hake S Development; 2014 Dec; 141(23):4590-7. PubMed ID: 25359728 [TBL] [Abstract][Full Text] [Related]
13. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Zhang J; Ku LX; Han ZP; Guo SL; Liu HJ; Zhang ZZ; Cao LR; Cui XJ; Chen YH J Exp Bot; 2014 Sep; 65(17):5063-76. PubMed ID: 24987012 [TBL] [Abstract][Full Text] [Related]
14. Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population. Ding J; Zhang L; Chen J; Li X; Li Y; Cheng H; Huang R; Zhou B; Li Z; Wang J; Wu J PLoS One; 2015; 10(10):e0141619. PubMed ID: 26509792 [TBL] [Abstract][Full Text] [Related]
15. Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2. Pressoir G; Brown PJ; Zhu W; Upadyayula N; Rocheford T; Buckler ES; Kresovich S Plant J; 2009 May; 58(4):618-28. PubMed ID: 19154226 [TBL] [Abstract][Full Text] [Related]
16. How to pattern a leaf. Bolduc N; O'Connor D; Moon J; Lewis M; Hake S Cold Spring Harb Symp Quant Biol; 2012; 77():47-51. PubMed ID: 23174765 [TBL] [Abstract][Full Text] [Related]
17. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf. Muehlbauer GJ; Fowler JE; Freeling M Development; 1997 Dec; 124(24):5097-106. PubMed ID: 9362467 [TBL] [Abstract][Full Text] [Related]
18. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. Zheng L; McMullen MD; Bauer E; Schön CC; Gierl A; Frey M J Exp Bot; 2015 Jul; 66(13):3917-30. PubMed ID: 25969552 [TBL] [Abstract][Full Text] [Related]
19. Direct mapping of density response in a population of B73 x Mo17 recombinant inbred lines of maize (Zea Mays L.). Gonzalo M; Holland JB; Vyn TJ; McIntyre LM Heredity (Edinb); 2010 Jun; 104(6):583-99. PubMed ID: 19888291 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. Zhao X; Luo L; Cao Y; Liu Y; Li Y; Wu W; Lan Y; Jiang Y; Gao S; Zhang Z; Shen Y; Pan G; Lin H BMC Genomics; 2018 Jan; 19(1):91. PubMed ID: 29370753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]