BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25344417)

  • 21. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1.
    Zoghbi HY; Orr HT
    J Biol Chem; 2009 Mar; 284(12):7425-9. PubMed ID: 18957430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The clinical diagnosis of autosomal dominant spinocerebellar ataxias.
    Klockgether T
    Cerebellum; 2008; 7(2):101-5. PubMed ID: 18418679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern India.
    Sinha KK; Worth PF; Jha DK; Sinha S; Stinton VJ; Davis MB; Wood NW; Sweeney MG; Bhatia KP
    J Neurol Neurosurg Psychiatry; 2004 Mar; 75(3):448-52. PubMed ID: 14966163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SCA1 molecular genetics: a history of a 13 year collaboration against glutamines.
    Orr HT; Zoghbi HY
    Hum Mol Genet; 2001 Oct; 10(20):2307-11. PubMed ID: 11673415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinocerebellar ataxias types 1, 2 and 3: age adjusted clinical severity of disease at presentation correlates with size of CAG repeat lengths.
    Netravathi M; Pal PK; Purushottam M; Thennarasu K; Mukherjee M; Jain S
    J Neurol Sci; 2009 Feb; 277(1-2):83-6. PubMed ID: 19049837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [SCA1, SCA2, MJD/SCA3 (CAG)n mutation detection and analysis in patients with hereditary spinocerebellar ataxia from Chinese families].
    Tang B; Wang D; Xia J
    Zhonghua Yi Xue Za Zhi; 1997 Nov; 77(11):819-22. PubMed ID: 9772474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. (CAG)
    Wang P; Chen Z; Peng Y; Cao L; Li X; Wang C; Yang H; Peng H; Shi Y; Zhou X; Li T; Feng L; Wu C; Qiu R; Xia K; Tang B; Jiang H
    Eur J Neurol; 2019 Aug; 26(8):1130-1136. PubMed ID: 30891880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1.
    Ju H; Kokubu H; Lim J
    Mol Neurobiol; 2014 Dec; 50(3):866-874. PubMed ID: 24752589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Studies on the CAG repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese Han].
    Wang J; Xu Q; Lei L; Shen L; Jiang H; Li X; Zhou Y; Yi J; Zhou J; Yan X; Pan Q; Xia K; Tang B
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2009 Dec; 26(6):620-5. PubMed ID: 19953482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The occurrence of spinocerebellar ataxias caused by dynamic mutations in Polish patients.
    Sułek-Piatkowska A; Zdzienicka E; Raczyńska-Rakowicz M; Krysa W; Rajkiewicz M; Szirkowiec W; Zaremba J
    Neurol Neurochir Pol; 2010; 44(3):238-45. PubMed ID: 20625959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell biology of spinocerebellar ataxia.
    Orr HT
    J Cell Biol; 2012 Apr; 197(2):167-77. PubMed ID: 22508507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The clinical features and gene mutation analysis in a pedigree of spinocerebellar ataxia type 7].
    Yin XZ; Zhang BR; Wu DW; Tian J; Zhang H
    Yi Chuan; 2007 Jun; 29(6):688-92. PubMed ID: 17650485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High prevalence of spinocerebellar ataxia type 1 (SCA1) in an isolated region of Japan.
    Onodera Y; Aoki M; Tsuda T; Kato H; Nagata T; Kameya T; Abe K; Itoyama Y
    J Neurol Sci; 2000 Sep; 178(2):153-8. PubMed ID: 11018707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of SCA1, MJD, and DPRLA triplet repeat polymorphisms on cognitive phenotypes in a normal population of adolescent twins.
    Luciano M; Hine E; Wright MJ; Duffy DL; MacMillan J; Martin NG
    Am J Med Genet B Neuropsychiatr Genet; 2007 Jan; 144B(1):95-100. PubMed ID: 16967484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6.
    Globas C; du Montcel ST; Baliko L; Boesch S; Depondt C; DiDonato S; Durr A; Filla A; Klockgether T; Mariotti C; Melegh B; Rakowicz M; Ribai P; Rola R; Schmitz-Hubsch T; Szymanski S; Timmann D; Van de Warrenburg BP; Bauer P; Schols L
    Mov Disord; 2008 Nov; 23(15):2232-8. PubMed ID: 18759344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of the CAG Triplet Repeat in ATXN1, ATXN3, and CACNA1A Loci in Peruvian Population.
    Gonzales-Sáenz C; Cruz-Rodriguez C; Espinoza-Huertas K; Véliz-Otani D; Marca V; Ortega O; Milla-Neyra K; Alvarez-Tejada J; Mazzetti P; Cornejo-Olivas M
    Cerebellum; 2020 Aug; 19(4):527-535. PubMed ID: 32285347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress in pathogenesis studies of spinocerebellar ataxia type 1.
    Cummings CJ; Orr HT; Zoghbi HY
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1079-81. PubMed ID: 10434309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes.
    Tezenas du Montcel S; Durr A; Bauer P; Figueroa KP; Ichikawa Y; Brussino A; Forlani S; Rakowicz M; Schöls L; Mariotti C; van de Warrenburg BP; Orsi L; Giunti P; Filla A; Szymanski S; Klockgether T; Berciano J; Pandolfo M; Boesch S; Melegh B; Timmann D; Mandich P; Camuzat A; ; ; Goto J; Ashizawa T; Cazeneuve C; Tsuji S; Pulst SM; Brusco A; Riess O; Brice A; Stevanin G
    Brain; 2014 Sep; 137(Pt 9):2444-55. PubMed ID: 24972706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1.
    Matilla-Dueñas A; Goold R; Giunti P
    Cerebellum; 2008; 7(2):106-14. PubMed ID: 18418661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1.
    Hubert L; Lin Y; Dion V; Wilson JH
    Hum Mol Genet; 2011 Dec; 20(24):4822-30. PubMed ID: 21926083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.