BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 25344436)

  • 1. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; optimization of media and production conditions using statistical methods.
    Yele VU; Desai K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):855-69. PubMed ID: 25344436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07.
    Gururaj P; Ramalingam S; Nandhini Devi G; Gautam P
    Braz J Microbiol; 2016; 47(3):647-57. PubMed ID: 27268114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of variables and value optimization for optimum lipase production by Bacillus pumilus RK31 using statistical methodology.
    Kumar R; Mahajan S; Kumar A; Singh D
    N Biotechnol; 2011 Jan; 28(1):65-71. PubMed ID: 20601261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of a halo-, solvent-, thermo-tolerant alkaline lipase by Staphylococcus arlettae JPBW-1, isolated from rock salt mine.
    Chauhan M; Garlapati VK
    Appl Biochem Biotechnol; 2013 Nov; 171(6):1429-43. PubMed ID: 23955348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002.
    Shu ZY; Wu JG; Cheng LX; Chen D; Jiang YM; Li X; Huang JZ
    Appl Biochem Biotechnol; 2012 Feb; 166(3):536-48. PubMed ID: 22081330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method.
    Teng Y; Xu Y
    Bioresour Technol; 2008 Jun; 99(9):3900-7. PubMed ID: 17888652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.
    Gowthami P; Muthukumar K; Velan M
    Biocontrol Sci; 2015; 20(2):125-33. PubMed ID: 26133510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase.
    Anbu P; Hur BK
    Biotechnol Appl Biochem; 2014; 61(5):528-34. PubMed ID: 24397298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology.
    Gupta N; Mehra G; Gupta R
    Can J Microbiol; 2004 May; 50(5):361-8. PubMed ID: 15213744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of response surface methodology for enhanced production of a thermostable bacterial lipase in a novel yeast system.
    Abu ML; Mohammad R; Oslan SN; Salleh AB
    Prep Biochem Biotechnol; 2021; 51(4):350-360. PubMed ID: 32940138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus.
    Samaei-Nouroozi A; Rezaei S; Khoshnevis N; Doosti M; Hajihoseini R; Khoshayand MR; Faramarzi MA
    Extremophiles; 2015 Sep; 19(5):933-47. PubMed ID: 26198037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S5 Lipase: an organic solvent tolerant enzyme.
    Rahman RN; Baharum SN; Salleh AB; Basri M
    J Microbiol; 2006 Dec; 44(6):583-90. PubMed ID: 17205035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of extracellular lipase production by halotolerant
    Balaji L; Chittoor JT; Jayaraman G
    Prep Biochem Biotechnol; 2020; 50(7):708-716. PubMed ID: 32134356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23.
    Maharana AK; Singh SM
    J Basic Microbiol; 2018 Apr; 58(4):331-342. PubMed ID: 29442377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation.
    Sahoo RK; Subudhi E; Kumar M
    Lett Appl Microbiol; 2014 Jun; 58(6):610-6. PubMed ID: 24527988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of thermostable organic solvent-tolerant lipase production by thermotolerant
    Riyadi FA; Alam MZ; Salleh MN; Salleh HM
    3 Biotech; 2017 Oct; 7(5):300. PubMed ID: 28884067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive.
    Sahoo RK; Das A; Gaur M; Sahu A; Sahoo S; Dey S; Rahman PKSM; Subudhi E
    Prep Biochem Biotechnol; 2020; 50(6):578-584. PubMed ID: 32011972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of lipase production by Burkholderia sp. using response surface methodology.
    Lo CF; Yu CY; Kuan IC; Lee SL
    Int J Mol Sci; 2012 Nov; 13(11):14889-97. PubMed ID: 23203100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic potential of lipase from Staphylococcus sp. MS1 for transesterification of jatropha oil into fatty acid methyl esters.
    Sharma M; Singh SS; Maan P; Sharma R
    World J Microbiol Biotechnol; 2014 Nov; 30(11):2885-97. PubMed ID: 25115850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.
    Mehta A; Kumar R; Gupta R
    Acta Microbiol Immunol Hung; 2012 Dec; 59(4):435-50. PubMed ID: 23195552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.