These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25344495)

  • 1. A novel representation of genomic sequences for taxonomic clustering and visualization by means of self-organizing maps.
    Delgado S; Morán F; Mora A; Merelo JJ; Briones C
    Bioinformatics; 2015 Mar; 31(5):736-44. PubMed ID: 25344495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes.
    Abe T; Sugawara H; Kanaya S; Kinouchi M; Ikemura T
    Gene; 2006 Jan; 365():27-34. PubMed ID: 16364569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the performance of self-organizing maps via growing representations.
    Merkow M; DeLisle RK
    J Chem Inf Model; 2007; 47(5):1797-807. PubMed ID: 17705465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic cluster detection in Kohonen's SOM.
    Brugger D; Bogdan M; Rosenstiel W
    IEEE Trans Neural Netw; 2008 Mar; 19(3):442-59. PubMed ID: 18334364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbolic SOM-based clustering of DNA fragment features for taxonomic visualization and classification.
    Martin C; Diaz NN; Ontrup J; Nattkemper TW
    Bioinformatics; 2008 Jul; 24(14):1568-74. PubMed ID: 18535082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ranked centroid projection: a data visualization approach with self-organizing maps.
    Yen GG; Wu Z
    IEEE Trans Neural Netw; 2008 Feb; 19(2):245-59. PubMed ID: 18269956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.
    Saraswati A; Nguyen VT; Hagenbuchner M; Tsoi AC
    Neural Netw; 2018 Sep; 105():166-184. PubMed ID: 29843096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization.
    Ferles C; Beaufort WS; Ferle V
    Methods Mol Biol; 2017; 1552():83-101. PubMed ID: 28224492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced visualization of self-organizing maps with vector fields.
    Pölzlbauer G; Dittenbach M; Rauber A
    Neural Netw; 2006; 19(6-7):911-22. PubMed ID: 16782304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TreeSOM: Cluster analysis in the self-organizing map.
    Samsonova EV; Kok JN; Ijzerman AP
    Neural Netw; 2006; 19(6-7):935-49. PubMed ID: 16781116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of DNA sequences with virtual potentials and their processing by (SEQREP) Kohonen self-organizing maps.
    Aires-de-Sousa J; Aires-de-Sousa L
    Bioinformatics; 2003 Jan; 19(1):30-6. PubMed ID: 12499290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topology-based hierarchical clustering of self-organizing maps.
    Taşdemir K; Milenov P; Tapsall B
    IEEE Trans Neural Netw; 2011 Mar; 22(3):474-85. PubMed ID: 21356611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps.
    Haese K; Goodhill GJ
    Neural Comput; 2001 Mar; 13(3):595-619. PubMed ID: 11244557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organizing neural networks to support the discovery of DNA-binding motifs.
    Mahony S; Benos PV; Smith TJ; Golden A
    Neural Netw; 2006; 19(6-7):950-62. PubMed ID: 16839740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A measure of DNA sequence similarity by Fourier Transform with applications on hierarchical clustering.
    Yin C; Chen Y; Yau SS
    J Theor Biol; 2014 Oct; 359():18-28. PubMed ID: 24911780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organizing tree-growing network for the classification of protein sequences.
    Wang HC; Dopazo J; de la Fraga LG; Zhu YP; Carazo JM
    Protein Sci; 1998 Dec; 7(12):2613-22. PubMed ID: 9865956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kernel-based self-organized maps trained with supervised bias for gene expression data analysis.
    Papadimitriou S; Likothanassis SD
    J Bioinform Comput Biol; 2004 Jan; 1(4):647-80. PubMed ID: 15290758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved model for whole genome phylogenetic analysis by Fourier transform.
    Yin C; Yau SS
    J Theor Biol; 2015 Oct; 382():99-110. PubMed ID: 26151589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic diversity of gene sequences isolated from the rumen as analysed using a self-organizing map (SOM).
    Mitsumori M; Nakagawa S; Matsui H; Shinkai T; Takenaka A
    J Appl Microbiol; 2010 Sep; 109(3):763-70. PubMed ID: 20233261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of ribosomal RNA sequences by combinatorial clustering.
    Xing P; Kulikowski C; Muchnik I; Dubchak I; Wolf DM; Spengler S; Zorn M
    Proc Int Conf Intell Syst Mol Biol; 1999; ():287-96. PubMed ID: 10786312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.