These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25344625)

  • 1. Colour vision in ADHD: part 1--testing the retinal dopaminergic hypothesis.
    Kim S; Al-Haj M; Chen S; Fuller S; Jain U; Carrasco M; Tannock R
    Behav Brain Funct; 2014 Oct; 10():38. PubMed ID: 25344625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color vision in ADHD: part 2--does attention influence color perception?
    Kim S; Al-Haj M; Fuller S; Chen S; Jain U; Carrasco M; Tannock R
    Behav Brain Funct; 2014 Oct; 10():39. PubMed ID: 25344205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colour perception in ADHD.
    Banaschewski T; Ruppert S; Tannock R; Albrecht B; Becker A; Uebel H; Sergeant JA; Rothenberger A
    J Child Psychol Psychiatry; 2006 Jun; 47(6):568-72. PubMed ID: 16712633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual function and color vision in adults with Attention-Deficit/Hyperactivity Disorder.
    Kim S; Chen S; Tannock R
    J Optom; 2014; 7(1):22-36. PubMed ID: 24646898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.
    Kim S; Banaschewski T; Tannock R
    J Optom; 2015; 8(2):116-30. PubMed ID: 25435188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the co-existence of Attention-Deficit/Hyperactivity Disorder and Chronic Tic Disorder in childhood-The case of colour discrimination, sustained attention and interference control.
    Uebel-von Sandersleben H; Albrecht B; Rothenberger A; Fillmer-Heise A; Roessner V; Sergeant J; Tannock R; Banaschewski T
    PLoS One; 2017; 12(6):e0178866. PubMed ID: 28594866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color perception deficits in co-existing attention-deficit/hyperactivity disorder and chronic tic disorders.
    Roessner V; Banaschewski T; Fillmer-Otte A; Becker A; Albrecht B; Uebel H; Sergeant J; Tannock R; Rothenberger A
    J Neural Transm (Vienna); 2008; 115(2):235-9. PubMed ID: 17896072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colour vision in migraine: selective deficits for S-cone discriminations.
    Shepherd AJ
    Cephalalgia; 2005 Jun; 25(6):412-23. PubMed ID: 15910565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
    Tuten WS; Harmening WM; Sabesan R; Roorda A; Sincich LC
    J Neurosci; 2017 Sep; 37(39):9498-9509. PubMed ID: 28871030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color naming deficits and attention-deficit/hyperactivity disorder: a retinal dopaminergic hypothesis.
    Tannock R; Banaschewski T; Gold D
    Behav Brain Funct; 2006 Jan; 2():4. PubMed ID: 16441891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
    Wool LE; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2019 Oct; 39(40):7893-7909. PubMed ID: 31405926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
    Wool LE; Crook JD; Troy JB; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2018 Feb; 38(6):1520-1540. PubMed ID: 29305531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina.
    Dacey DM; Crook JD; Packer OS
    Vis Neurosci; 2014 Mar; 31(2):139-51. PubMed ID: 23895762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are red, yellow, green, and blue perceptual categories?
    Witzel C; Gegenfurtner KR
    Vision Res; 2018 Oct; 151():152-163. PubMed ID: 29653135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.
    Pridmore RW
    PLoS One; 2013; 8(10):e77134. PubMed ID: 24204755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatic bipolar cell pathways in the mouse retina.
    Breuninger T; Puller C; Haverkamp S; Euler T
    J Neurosci; 2011 Apr; 31(17):6504-17. PubMed ID: 21525291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential distributions of red-green and blue-yellow cone opponency across the visual field.
    Mullen KT; Kingdom FA
    Vis Neurosci; 2002; 19(1):109-18. PubMed ID: 12180855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color perception in the intermediate periphery of the visual field.
    Hansen T; Pracejus L; Gegenfurtner KR
    J Vis; 2009 Apr; 9(4):26.1-12. PubMed ID: 19757935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three distinct blue-green color pathways in a mammalian retina.
    Mills SL; Tian LM; Hoshi H; Whitaker CM; Massey SC
    J Neurosci; 2014 Jan; 34(5):1760-8. PubMed ID: 24478358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.