These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1375 related articles for article (PubMed ID: 25344673)

  • 1. Dormancy and quiescence of skeletal muscle stem cells.
    Rocheteau P; Vinet M; Chretien F
    Results Probl Cell Differ; 2015; 56():215-35. PubMed ID: 25344673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adult skeletal muscle stem cells.
    Sambasivan R; Tajbakhsh S
    Results Probl Cell Differ; 2015; 56():191-213. PubMed ID: 25344672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis.
    Koning M; Werker PM; van Luyn MJ; Krenning G; Harmsen MC
    Differentiation; 2012 Nov; 84(4):314-21. PubMed ID: 23023067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory factors and cell populations involved in skeletal muscle regeneration.
    Ten Broek RW; Grefte S; Von den Hoff JW
    J Cell Physiol; 2010 Jul; 224(1):7-16. PubMed ID: 20232319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lying low but ready for action: the quiescent muscle satellite cell.
    Montarras D; L'honoré A; Buckingham M
    FEBS J; 2013 Sep; 280(17):4036-50. PubMed ID: 23735050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells.
    Moyle LA; Zammit PS
    Methods Mol Biol; 2014; 1210():63-78. PubMed ID: 25173161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intact satellite cells lead to remarkable protection against Smn gene defect in differentiated skeletal muscle.
    Nicole S; Desforges B; Millet G; Lesbordes J; Cifuentes-Diaz C; Vertes D; Cao ML; De Backer F; Languille L; Roblot N; Joshi V; Gillis JM; Melki J
    J Cell Biol; 2003 May; 161(3):571-82. PubMed ID: 12743106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The skeletal muscle satellite cell: the stem cell that came in from the cold.
    Zammit PS; Partridge TA; Yablonka-Reuveni Z
    J Histochem Cytochem; 2006 Nov; 54(11):1177-91. PubMed ID: 16899758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myostatin negatively regulates satellite cell activation and self-renewal.
    McCroskery S; Thomas M; Maxwell L; Sharma M; Kambadur R
    J Cell Biol; 2003 Sep; 162(6):1135-47. PubMed ID: 12963705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.
    Ishii K; Suzuki N; Mabuchi Y; Ito N; Kikura N; Fukada S; Okano H; Takeda S; Akazawa C
    Stem Cells; 2015 Oct; 33(10):3017-27. PubMed ID: 26013034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.
    Kostallari E; Baba-Amer Y; Alonso-Martin S; Ngoh P; Relaix F; Lafuste P; Gherardi RK
    Development; 2015 Apr; 142(7):1242-53. PubMed ID: 25742797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdk9-55: a new player in muscle regeneration.
    Giacinti C; Musarò A; De Falco G; Jourdan I; Molinaro M; Bagella L; Simone C; Giordano A
    J Cell Physiol; 2008 Sep; 216(3):576-82. PubMed ID: 18546201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging biology of satellite cells and their therapeutic potential.
    Kuang S; Rudnicki MA
    Trends Mol Med; 2008 Feb; 14(2):82-91. PubMed ID: 18218339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle.
    Ono Y; Masuda S; Nam HS; Benezra R; Miyagoe-Suzuki Y; Takeda S
    J Cell Sci; 2012 Mar; 125(Pt 5):1309-17. PubMed ID: 22349695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a persistently quiescent muscle satellite cell population.
    Steele AP; Syroid AL; Mombo C; Raveetharan S; Rebalka IA; Hawke TJ
    Am J Physiol Cell Physiol; 2024 Aug; 327(2):C415-C422. PubMed ID: 38912737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal.
    Zismanov V; Chichkov V; Colangelo V; Jamet S; Wang S; Syme A; Koromilas AE; Crist C
    Cell Stem Cell; 2016 Jan; 18(1):79-90. PubMed ID: 26549106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment.
    Dhawan J; Rando TA
    Trends Cell Biol; 2005 Dec; 15(12):666-73. PubMed ID: 16243526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle stem cells.
    Relaix F; Marcelle C
    Curr Opin Cell Biol; 2009 Dec; 21(6):748-53. PubMed ID: 19932015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle stem cells for muscle regeneration.
    Kim J; Braun T
    Methods Mol Biol; 2014; 1213():245-53. PubMed ID: 25173388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-renewal and expansion of single transplanted muscle stem cells.
    Sacco A; Doyonnas R; Kraft P; Vitorovic S; Blau HM
    Nature; 2008 Nov; 456(7221):502-6. PubMed ID: 18806774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.