These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25344682)

  • 1. Retro operation on the Trp-cage miniprotein sequence produces an unstructured molecule capable of folding similar to the original only upon 2,2,2-trifluoroethanol addition.
    Vymětal J; Bathula SR; Cerný J; Chaloupková R; Zídek L; Sklenář V; Vondrášek J
    Protein Eng Des Sel; 2014 Dec; 27(12):463-72. PubMed ID: 25344682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of trifluroethanol with the Trp-cage peptide.
    Chatterjee C; Gerig JT
    Biopolymers; 2007 Oct 5-15; 87(2-3):115-23. PubMed ID: 17593547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the structure and dynamics of mastoparan-X during folding in aqueous TFE by CD and NMR spectroscopy.
    Crandall YM; Bruch MD
    Biopolymers; 2008 Mar; 89(3):197-209. PubMed ID: 18008325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of Trifluoroethanol Interactions with Trp-Cage in Trifluoroethanol-Water at 298 K through Molecular Dynamics Simulations and Intermolecular Nuclear Overhauser Effects.
    Gerig JT
    J Phys Chem B; 2019 Apr; 123(15):3248-3258. PubMed ID: 30916962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding dynamics of Trp-cage in the presence of chemical interference and macromolecular crowding. I.
    Samiotakis A; Cheung MS
    J Chem Phys; 2011 Nov; 135(17):175101. PubMed ID: 22070323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states.
    Neidigh JW; Fesinmeyer RM; Prickett KS; Andersen NH
    Biochemistry; 2001 Nov; 40(44):13188-200. PubMed ID: 11683627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation/deprotonation effects on the stability of the Trp-cage miniprotein.
    Jimenez-Cruz CA; Makhatadze GI; Garcia AE
    Phys Chem Chem Phys; 2011 Oct; 13(38):17056-63. PubMed ID: 21773639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water.
    Paschek D; Nymeyer H; García AE
    J Struct Biol; 2007 Mar; 157(3):524-33. PubMed ID: 17293125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of water-protein hydrogen bonding on the stability of Trp-cage miniprotein. A comparison between the TIP3P and TIP4P-Ew water models.
    Paschek D; Day R; García AE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19840-7. PubMed ID: 21845272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of Trifluoroethanol Interactions with Trp-Cage through MD Simulations and Intermolecular Nuclear Overhauser Effects.
    Gerig JT
    J Phys Chem B; 2016 Nov; 120(43):11256-11265. PubMed ID: 27682194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoelectronic tuning of the structure and stability of the trp cage miniprotein.
    Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Sep; 128(38):12430-1. PubMed ID: 16984189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
    Rovó P; Farkas V; Hegyi O; Szolomájer-Csikós O; Tóth GK; Perczel A
    J Pept Sci; 2011 Sep; 17(9):610-9. PubMed ID: 21644245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trp-Cage Folding on Organic Surfaces.
    Levine ZA; Fischer SA; Shea JE; Pfaendtner J
    J Phys Chem B; 2015 Aug; 119(33):10417-25. PubMed ID: 26207727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confinement-induced states in the folding landscape of the Trp-cage miniprotein.
    Marino KA; Bolhuis PG
    J Phys Chem B; 2012 Oct; 116(39):11872-80. PubMed ID: 22954175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model.
    Ding F; Buldyrev SV; Dokholyan NV
    Biophys J; 2005 Jan; 88(1):147-55. PubMed ID: 15533926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model.
    Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A
    J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing a 20-residue protein.
    Neidigh JW; Fesinmeyer RM; Andersen NH
    Nat Struct Biol; 2002 Jun; 9(6):425-30. PubMed ID: 11979279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation.
    Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F
    Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy.
    Streicher WW; Makhatadze GI
    Biochemistry; 2007 Mar; 46(10):2876-80. PubMed ID: 17295518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability.
    Molla AR; Mandal DK
    Biochimie; 2013 Feb; 95(2):204-14. PubMed ID: 23022144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.