These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25344689)

  • 1. Long-range charge transport in single G-quadruplex DNA molecules.
    Livshits GI; Stern A; Rotem D; Borovok N; Eidelshtein G; Migliore A; Penzo E; Wind SJ; Di Felice R; Skourtis SS; Cuevas JC; Gurevich L; Kotlyar AB; Porath D
    Nat Nanotechnol; 2014 Dec; 9(12):1040-6. PubMed ID: 25344689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone charge transport in double-stranded DNA.
    Zhuravel R; Huang H; Polycarpou G; Polydorides S; Motamarri P; Katrivas L; Rotem D; Sperling J; Zotti LA; Kotlyar AB; Cuevas JC; Gavini V; Skourtis SS; Porath D
    Nat Nanotechnol; 2020 Oct; 15(10):836-840. PubMed ID: 32807877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auto-orientation of G-wire DNA on mica.
    Vesenka J; Bagg D; Wolff A; Reichert A; Moeller R; Fritzsche W
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):256-63. PubMed ID: 17512706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular electronics: a DNA that conducts.
    Scheer E
    Nat Nanotechnol; 2014 Dec; 9(12):960-1. PubMed ID: 25466536
    [No Abstract]   [Full Text] [Related]  

  • 5. High Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups.
    Jiménez-Monroy KL; Renaud N; Drijkoningen J; Cortens D; Schouteden K; van Haesendonck C; Guedens WJ; Manca JV; Siebbeles LD; Grozema FC; Wagner PH
    J Phys Chem A; 2017 Feb; 121(6):1182-1188. PubMed ID: 28094940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge splitters and charge transport junctions based on guanine quadruplexes.
    Sha R; Xiang L; Liu C; Balaeff A; Zhang Y; Zhang P; Li Y; Beratan DN; Tao N; Seeman NC
    Nat Nanotechnol; 2018 Apr; 13(4):316-321. PubMed ID: 29483600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of long DNA-based nanowires.
    Kotlyar A
    Methods Mol Biol; 2011; 749():115-40. PubMed ID: 21674369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range electron tunnelling in oligo-porphyrin molecular wires.
    Sedghi G; García-Suárez VM; Esdaile LJ; Anderson HL; Lambert CJ; Martín S; Bethell D; Higgins SJ; Elliott M; Bennett N; Macdonald JE; Nichols RJ
    Nat Nanotechnol; 2011 Jul; 6(8):517-23. PubMed ID: 21804555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical conduction through DNA molecules.
    Fink HW; Schönenberger C
    Nature; 1999 Apr; 398(6726):407-10. PubMed ID: 10201370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Regulation of Long-Distance Charge Transport in DNA Nanowires by Dynamically Controlling Steric Conformation.
    Gao D; Tang Z; Chen X; Wu R; Tian Y; Min Q; Zhang JR; Chen Z; Zhu JJ
    Nano Lett; 2023 May; 23(10):4201-4208. PubMed ID: 37188354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA in the material world: electrical properties and nano-applications.
    Triberis GP; Dimakogianni M
    Recent Pat Nanotechnol; 2009; 3(2):135-53. PubMed ID: 19519596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Synthesis and Measurement of Charge Transport in DNA-Based Derivatives.
    Zhuravel R; Stern A; Fardian-Melamed N; Eidelshtein G; Katrivas L; Rotem D; Kotlyar AB; Porath D
    Adv Mater; 2018 Oct; 30(41):e1706984. PubMed ID: 29984432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron ratcheting in self-assembled soft matter.
    Valdiviezo J; Zhang P; Beratan DN
    J Chem Phys; 2021 Aug; 155(5):055102. PubMed ID: 34364335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of monomolecular G4-DNA nanowires with TMPyP: evidence for intercalation.
    Lubitz I; Borovok N; Kotlyar A
    Biochemistry; 2007 Nov; 46(45):12925-9. PubMed ID: 17956126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of conductive and photoluminescent DNA-templated polyindole nanowires.
    Hassanien R; Al-Hinai M; Farha Al-Said SA; Little R; Siller L; Wright NG; Houlton A; Horrocks BR
    ACS Nano; 2010 Apr; 4(4):2149-59. PubMed ID: 20218665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.
    Gali P; Sapkota G; Syllaios AJ; Littler C; Philipose U
    Nanotechnology; 2013 Jun; 24(22):225704. PubMed ID: 23644899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarizability of G4-DNA observed by electrostatic force microscopy measurements.
    Cohen H; Sapir T; Borovok N; Molotsky T; Di Felice R; Kotlyar AB; Porath D
    Nano Lett; 2007 Apr; 7(4):981-6. PubMed ID: 17352504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally activated charge transport in microbial protein nanowires.
    Lampa-Pastirk S; Veazey JP; Walsh KA; Feliciano GT; Steidl RJ; Tessmer SH; Reguera G
    Sci Rep; 2016 Mar; 6():23517. PubMed ID: 27009596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.
    Gómez-Navarro C; Moreno-Herrero F; de Pablo PJ; Colchero J; Gómez-Herrero J; Baró AM
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8484-7. PubMed ID: 12070346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of backbone on the charge transport properties of G4-DNA molecules: a model-based calculation.
    Guo AM; Yang Z; Zhu HJ; Xiong SJ
    J Phys Condens Matter; 2010 Feb; 22(6):065102. PubMed ID: 21389362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.