These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 25344813)

  • 21. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone.
    Yao R; Wang L; Li Y; Chen L; Li S; Du X; Wang B; Yan J; Li J; Xie D
    J Exp Bot; 2018 Apr; 69(9):2355-2365. PubMed ID: 29365172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of D-ring C-3' methylation of strigolactone analogs on their transcription regulating activity in rice.
    Jamil M; Haider I; Kountche BA; Al-Babili S
    Plant Signal Behav; 2019; 14(11):1668234. PubMed ID: 31552795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diverse Roles of MAX1 Homologues in Rice.
    Marzec M; Situmorang A; Brewer PB; Brąszewska A
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33202900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol.
    Wang Y; Durairaj J; Suárez Duran HG; van Velzen R; Flokova K; Liao CY; Chojnacka A; MacFarlane S; Schranz ME; Medema MH; van Dijk ADJ; Dong L; Bouwmeester HJ
    New Phytol; 2022 Sep; 235(5):1884-1899. PubMed ID: 35612785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tillering phenotype of the rice plastid terminal oxidase (PTOX) loss-of-function mutant is associated with strigolactone deficiency.
    Tamiru M; Abe A; Utsushi H; Yoshida K; Takagi H; Fujisaki K; Undan JR; Rakshit S; Takaichi S; Jikumaru Y; Yokota T; Terry MJ; Terauchi R
    New Phytol; 2014 Apr; 202(1):116-131. PubMed ID: 24350905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs.
    Cardoso C; Zhang Y; Jamil M; Hepworth J; Charnikhova T; Dimkpa SO; Meharg C; Wright MH; Liu J; Meng X; Wang Y; Li J; McCouch SR; Leyser O; Price AH; Bouwmeester HJ; Ruyter-Spira C
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2379-84. PubMed ID: 24464483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.
    Wakabayashi T; Hamana M; Mori A; Akiyama R; Ueno K; Osakabe K; Osakabe Y; Suzuki H; Takikawa H; Mizutani M; Sugimoto Y
    Sci Adv; 2019 Dec; 5(12):eaax9067. PubMed ID: 32064317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 9-cis-β-Apo-10'-carotenal is the precursor of strigolactones in planta.
    Chen GE; Wang JY; Jamil M; Braguy J; Al-Babili S
    Planta; 2022 Sep; 256(5):88. PubMed ID: 36152118
    [No Abstract]   [Full Text] [Related]  

  • 29. Confirming stereochemical structures of strigolactones produced by rice and tobacco.
    Xie X; Yoneyama K; Kisugi T; Uchida K; Ito S; Akiyama K; Hayashi H; Yokota T; Nomura T; Yoneyama K
    Mol Plant; 2013 Jan; 6(1):153-63. PubMed ID: 23204500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Sado A; Xie X; Yoneyama K; Asami K; Seto Y; Nomura T; Yamaguchi S; Yoneyama K; Akiyama K
    Phytochemistry; 2020 Jun; 174():112349. PubMed ID: 32213359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strigolactone biosynthesis and perception.
    Seto Y; Yamaguchi S
    Curr Opin Plant Biol; 2014 Oct; 21():1-6. PubMed ID: 24981923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3-Hydroxycarlactone, a Novel Product of the Strigolactone Biosynthesis Core Pathway.
    Baz L; Mori N; Mi J; Jamil M; Kountche BA; Guo X; Balakrishna A; Jia KP; Vermathen M; Akiyama K; Al-Babili S
    Mol Plant; 2018 Oct; 11(10):1312-1314. PubMed ID: 29969682
    [No Abstract]   [Full Text] [Related]  

  • 33. Identification of a Prunus MAX1 homolog as a unique strigol synthase.
    Wu S; Zhou A; Hiugano K; Yoda A; Xie X; Yamane K; Miura K; Nomura T; Li Y
    New Phytol; 2023 Sep; 239(5):1819-1833. PubMed ID: 37292030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carlactone-independent seedling morphogenesis in Arabidopsis.
    Scaffidi A; Waters MT; Ghisalberti EL; Dixon KW; Flematti GR; Smith SM
    Plant J; 2013 Oct; 76(1):1-9. PubMed ID: 23773129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis.
    Homma M; Wakabayashi T; Moriwaki Y; Shiotani N; Shigeta T; Isobe K; Okazawa A; Ohta D; Terada T; Shimizu K; Mizutani M; Takikawa H; Sugimoto Y
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2313683121. PubMed ID: 38905237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis.
    Mashiguchi K; Sasaki E; Shimada Y; Nagae M; Ueno K; Nakano T; Yoneyama K; Suzuki Y; Asami T
    Biosci Biotechnol Biochem; 2009 Nov; 73(11):2460-5. PubMed ID: 19897913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strigolactone biosynthesis in rice can occur via a 9-cis-3-OH-10'-apo-β-carotenal intermediate.
    Wang JY; Chen GE; Balakrishna A; Jamil M; Berqdar L; Al-Babili S
    FEBS Lett; 2024 Mar; 598(5):571-578. PubMed ID: 38373744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular evolution of two consecutive carotenoid cleavage dioxygenase genes in strigolactone biosynthesis in plants.
    Wang RK; Lu JJ; Xing GN; Gai JY; Zhao TJ
    Genet Mol Res; 2011 Dec; 10(4):3664-73. PubMed ID: 22180067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions.
    Bruno M; Vermathen M; Alder A; Wüst F; Schaub P; van der Steen R; Beyer P; Ghisla S; Al-Babili S
    FEBS Lett; 2017 Mar; 591(5):792-800. PubMed ID: 28186640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strigolactones (SLs) modulate the plastochron by regulating KLUH (KLU) transcript abundance in Arabidopsis.
    Cornet F; Pillot JP; Le Bris P; Pouvreau JB; Arnaud N; de Saint Germain A; Rameau C
    New Phytol; 2021 Dec; 232(5):1909-1916. PubMed ID: 34498760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.