These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 25344813)

  • 41. Assembly of an evolutionarily new pathway for α-pyrone biosynthesis in Arabidopsis.
    Weng JK; Li Y; Mo H; Chapple C
    Science; 2012 Aug; 337(6097):960-4. PubMed ID: 22923580
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants.
    Iseki M; Shida K; Kuwabara K; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    J Exp Bot; 2018 Apr; 69(9):2305-2318. PubMed ID: 29294064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Apocarotenoids: A New Carotenoid-Derived Pathway.
    Beltran JC; Stange C
    Subcell Biochem; 2016; 79():239-72. PubMed ID: 27485225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants.
    Gaiji N; Cardinale F; Prandi C; Bonfante P; Ranghino G
    BMC Res Notes; 2012 Jun; 5():307. PubMed ID: 22713366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions.
    Kim JE; Cheng KM; Craft NE; Hamberger B; Douglas CJ
    Phytochemistry; 2010 Feb; 71(2-3):168-78. PubMed ID: 19939422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis.
    van Zeijl A; Liu W; Xiao TT; Kohlen W; Yang WC; Bisseling T; Geurts R
    BMC Plant Biol; 2015 Oct; 15():260. PubMed ID: 26503135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice.
    Wang JY; Haider I; Jamil M; Fiorilli V; Saito Y; Mi J; Baz L; Kountche BA; Jia KP; Guo X; Balakrishna A; Ntui VO; Reinke B; Volpe V; Gojobori T; Blilou I; Lanfranco L; Bonfante P; Al-Babili S
    Nat Commun; 2019 Feb; 10(1):810. PubMed ID: 30778050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strigolactone perception and deactivation by a hydrolase receptor DWARF14.
    Seto Y; Yasui R; Kameoka H; Tamiru M; Cao M; Terauchi R; Sakurada A; Hirano R; Kisugi T; Hanada A; Umehara M; Seo E; Akiyama K; Burke J; Takeda-Kamiya N; Li W; Hirano Y; Hakoshima T; Mashiguchi K; Noel JP; Kyozuka J; Yamaguchi S
    Nat Commun; 2019 Jan; 10(1):191. PubMed ID: 30643123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana.
    Stes E; Depuydt S; De Keyser A; Matthys C; Audenaert K; Yoneyama K; Werbrouck S; Goormachtig S; Vereecke D
    J Exp Bot; 2015 Aug; 66(16):5123-34. PubMed ID: 26136271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Arabidopsis D27-LIKE1 is a cis/cis/trans-β-carotene isomerase that contributes to Strigolactone biosynthesis and negatively impacts ABA level.
    Yang Y; Abuauf H; Song S; Wang JY; Alagoz Y; Moreno JC; Mi J; Ablazov A; Jamil M; Ali S; Zheng X; Balakrishna A; Blilou I; Al-Babili S
    Plant J; 2023 Mar; 113(5):986-1003. PubMed ID: 36602437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A strigolactone signal is required for adventitious root formation in rice.
    Sun H; Tao J; Hou M; Huang S; Chen S; Liang Z; Xie T; Wei Y; Xie X; Yoneyama K; Xu G; Zhang Y
    Ann Bot; 2015 Jun; 115(7):1155-62. PubMed ID: 25888593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Strigolactone Biosynthesis Gene Contributed to the Green Revolution in Rice.
    Wang Y; Shang L; Yu H; Zeng L; Hu J; Ni S; Rao Y; Li S; Chu J; Meng X; Wang L; Hu P; Yan J; Kang S; Qu M; Lin H; Wang T; Wang Q; Hu X; Chen H; Wang B; Gao Z; Guo L; Zeng D; Zhu X; Xiong G; Li J; Qian Q
    Mol Plant; 2020 Jun; 13(6):923-932. PubMed ID: 32222483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis.
    Li Z; Czarnecki O; Chourey K; Yang J; Tuskan GA; Hurst GB; Pan C; Chen JG
    J Proteome Res; 2014 Mar; 13(3):1359-72. PubMed ID: 24559214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes.
    Nomura T; Magome H; Hanada A; Takeda-Kamiya N; Mander LN; Kamiya Y; Yamaguchi S
    Plant Cell Physiol; 2013 Nov; 54(11):1837-51. PubMed ID: 24009336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family.
    Auldridge ME; Block A; Vogel JT; Dabney-Smith C; Mila I; Bouzayen M; Magallanes-Lundback M; DellaPenna D; McCarty DR; Klee HJ
    Plant J; 2006 Mar; 45(6):982-93. PubMed ID: 16507088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis.
    Umehara M; Cao M; Akiyama K; Akatsu T; Seto Y; Hanada A; Li W; Takeda-Kamiya N; Morimoto Y; Yamaguchi S
    Plant Cell Physiol; 2015 Jun; 56(6):1059-72. PubMed ID: 25713176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition.
    Ito S; Ito K; Abeta N; Takahashi R; Sasaki Y; Yajima S
    Plant Signal Behav; 2016; 11(1):e1126031. PubMed ID: 26653175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The synthesis of strigolactone is affected by endogenous ascorbic acid in transgenic rice for l-galactono-1, 4-lactone dehydrogenase suppressed or overexpressing.
    Yu L; Gao B; Li Y; Tan W; Li M; Zhou L; Peng C; Xiao L; Liu Y
    J Plant Physiol; 2020; 246-247():153139. PubMed ID: 32114415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.
    Ueda H; Kusaba M
    Plant Physiol; 2015 Sep; 169(1):138-47. PubMed ID: 25979917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.