These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 25344903)

  • 1. Bioinformatics for cancer immunotherapy target discovery.
    Olsen LR; Campos B; Barnkob MS; Winther O; Brusic V; Andersen MH
    Cancer Immunol Immunother; 2014 Dec; 63(12):1235-49. PubMed ID: 25344903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives.
    Washah HN; Salifu EY; Soremekun O; Elrashedy AA; Munsamy G; Olotu FA; Soliman MES
    Comb Chem High Throughput Screen; 2020; 23(8):687-698. PubMed ID: 32338212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics for cancer immunology and immunotherapy.
    Charoentong P; Angelova M; Efremova M; Gallasch R; Hackl H; Galon J; Trajanoski Z
    Cancer Immunol Immunother; 2012 Nov; 61(11):1885-903. PubMed ID: 22986455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Methods for Identification of T Cell Neoepitopes in Tumors.
    Jurtz VI; Olsen LR
    Methods Mol Biol; 2019; 1878():157-172. PubMed ID: 30378075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics for Cancer Immunotherapy.
    Holtsträter C; Schrörs B; Bukur T; Löwer M
    Methods Mol Biol; 2020; 2120():1-9. PubMed ID: 32124308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry.
    Freudenmann LK; Marcu A; Stevanović S
    Immunology; 2018 Jul; 154(3):331-345. PubMed ID: 29658117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the antigenic fingerprint of each individual cancer for immunotherapy of human cancer: genomics shows a new way and its challenges.
    Srivastava PK; Duan F
    Cancer Immunol Immunother; 2013 May; 62(5):967-74. PubMed ID: 23604106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neoepitopes as cancer immunotherapy targets: key challenges and opportunities.
    Brennick CA; George MM; Corwin WL; Srivastava PK; Ebrahimi-Nik H
    Immunotherapy; 2017 Mar; 9(4):361-371. PubMed ID: 28303769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New Bioinformatics Resource for Use by the Cancer Immunology Community.
    Koşaloğlu-Yalçın Z; Blazeska N; Carter H; Nielsen M; Cohen E; Kufe D; Conejo-Garcia J; Robbins P; Schoenberger SP; Peters B; Sette A
    Front Immunol; 2021; 12():735609. PubMed ID: 34504503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Informatics for cancer immunotherapy.
    Hammerbacher J; Snyder A
    Ann Oncol; 2017 Dec; 28(suppl_12):xii56-xii73. PubMed ID: 29253114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T Cell Epitope Prediction and Its Application to Immunotherapy.
    Schaap-Johansen AL; Vujović M; Borch A; Hadrup SR; Marcatili P
    Front Immunol; 2021; 12():712488. PubMed ID: 34603286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivering safer immunotherapies for cancer.
    Milling L; Zhang Y; Irvine DJ
    Adv Drug Deliv Rev; 2017 May; 114():79-101. PubMed ID: 28545888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of cancer immunogens: current state of the art.
    Doytchinova IA; Flower DR
    BMC Immunol; 2018 Mar; 19(1):11. PubMed ID: 29544447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength.
    de Beijer MTA; Jansen DTSL; Dou Y; van Esch WJE; Mok JY; Maas MJP; Brasser G; de Man RA; Woltman AM; Buschow SI
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31852786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery.
    de Sousa E; Lérias JR; Beltran A; Paraschoudi G; Condeço C; Kamiki J; António PA; Figueiredo N; Carvalho C; Castillo-Martin M; Wang Z; Ligeiro D; Rao M; Maeurer M
    Front Immunol; 2021; 12():592031. PubMed ID: 34335558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of systems biology in cancer immunotherapy: from target discovery to biomarkers of clinical outcome.
    Guhathakurta D; Sheikh NA; Meagher TC; Letarte S; Trager JB
    Expert Rev Clin Pharmacol; 2013 Jul; 6(4):387-401. PubMed ID: 23927667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients.
    Meier A; Reker S; Svane IM; Holten-Andersen L; Becker JC; Søndergaard I; Andersen MH; Thor Straten P
    Cancer Immunol Immunother; 2005 Mar; 54(3):219-28. PubMed ID: 15580499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapies and Combination Strategies for Immuno-Oncology.
    Barbari C; Fontaine T; Parajuli P; Lamichhane N; Jakubski S; Lamichhane P; Deshmukh RR
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Imaging of Immunotherapy Targets in Cancer.
    Ehlerding EB; England CG; McNeel DG; Cai W
    J Nucl Med; 2016 Oct; 57(10):1487-1492. PubMed ID: 27469363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Approaches to Cancer Immunotherapy.
    Szeto GL; Finley SD
    Trends Cancer; 2019 Jul; 5(7):400-410. PubMed ID: 31311655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.