BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25345401)

  • 41. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS; Schatz GC
    Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly.
    Zhang L; Sun X; Song Y; Jiang X; Dong S; Wang E
    Langmuir; 2006 Mar; 22(6):2838-43. PubMed ID: 16519492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scanning near-field IR microscopy of proteins in lipid bilayers.
    Ballout F; Krassen H; Kopf I; Ataka K; Bründermann E; Heberle J; Havenith M
    Phys Chem Chem Phys; 2011 Dec; 13(48):21432-6. PubMed ID: 22048276
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing ras effector interactions on nanoparticle supported lipid bilayers.
    Filchtinski D; Bee C; Savopol T; Engelhard M; Becker CF; Herrmann C
    Bioconjug Chem; 2008 Sep; 19(9):1938-44. PubMed ID: 18712896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.
    Bendix PM; Reihani SN; Oddershede LB
    ACS Nano; 2010 Apr; 4(4):2256-62. PubMed ID: 20369898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicity of single nanoparticles in single embryos.
    Lee KJ; Nallathamby PD; Browning LM; Desai T; Cherukuri PK; Xu XH
    Analyst; 2012 Jul; 137(13):2973-86. PubMed ID: 22563577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anomalous diffusion in supported lipid bilayers induced by oxide surface nanostructures.
    Tero R; Sazaki G; Ujihara T; Urisu T
    Langmuir; 2011 Aug; 27(16):9662-5. PubMed ID: 21761843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates.
    Taylor JD; Phillips KS; Cheng Q
    Lab Chip; 2007 Jul; 7(7):927-30. PubMed ID: 17594015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organized arrays of individual DNA molecules tethered to supported lipid bilayers.
    Granéli A; Yeykal CC; Prasad TK; Greene EC
    Langmuir; 2006 Jan; 22(1):292-9. PubMed ID: 16378434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three dimensional nanoparticle trapping enhanced by surface plasmon resonance.
    Wu J; Gan X
    Opt Express; 2010 Dec; 18(26):27619-26. PubMed ID: 21197036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy.
    Dalgarno PA; Dalgarno HI; Putoud A; Lambert R; Paterson L; Logan DC; Towers DP; Warburton RJ; Greenaway AH
    Opt Express; 2010 Jan; 18(2):877-84. PubMed ID: 20173908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Subnanometric stabilization of plasmon-enhanced optical microscopy.
    Yano TA; Ichimura T; Kuwahara S; Verma P; Kawata S
    Nanotechnology; 2012 May; 23(20):205503. PubMed ID: 22543309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns.
    Celiksoy S; Ye W; Wandner K; Schlapp F; Kaefer K; Ahijado-Guzmán R; Sönnichsen C
    J Phys Chem Lett; 2020 Jun; 11(12):4554-4558. PubMed ID: 32436712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane.
    Chen P; Huang Z; Liang J; Cui T; Zhang X; Miao B; Yan LT
    ACS Nano; 2016 Dec; 10(12):11541-11547. PubMed ID: 27936576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.