These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25345401)

  • 61. Simultaneous Electro-Optical Tracking for Nanoparticle Recognition and Counting.
    Angeli E; Volpe A; Fanzio P; Repetto L; Firpo G; Guida P; Lo Savio R; Wanunu M; Valbusa U
    Nano Lett; 2015 Sep; 15(9):5696-701. PubMed ID: 26225640
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles.
    Welsher K; Yang H
    Nat Nanotechnol; 2014 Mar; 9(3):198-203. PubMed ID: 24561356
    [TBL] [Abstract][Full Text] [Related]  

  • 63. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging.
    Fazio T; Visnapuu ML; Wind S; Greene EC
    Langmuir; 2008 Sep; 24(18):10524-31. PubMed ID: 18683960
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cadherin Diffusion in Supported Lipid Bilayers Exhibits Calcium-Dependent Dynamic Heterogeneity.
    Cai Y; Shashikanth N; Leckband DE; Schwartz DK
    Biophys J; 2016 Dec; 111(12):2658-2665. PubMed ID: 28002742
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Diffusion of Lipid Nanovesicles Bound to a Lipid Membrane Is Associated with the Partial-Slip Boundary Condition.
    Olsén E; Jõemetsa S; González A; Joyce P; Zhdanov VP; Midtvedt D; Höök F
    Nano Lett; 2021 Oct; 21(19):8503-8509. PubMed ID: 34403260
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single-Particle Dynamic Light Scattering: Shapes of Individual Nanoparticles.
    Guerra LF; Muir TW; Yang H
    Nano Lett; 2019 Aug; 19(8):5530-5536. PubMed ID: 31272153
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Correlation between the translational and rotational diffusion of rod-shaped nanocargo on a lipid membrane revealed by single-particle tracking.
    He L; Li Y; Wei L; Ye Z; Liu H; Xiao L
    Nanoscale; 2019 May; 11(20):10080-10087. PubMed ID: 31089641
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Probing Single-Molecule Binding Event by the Dynamic Counting and Mapping of Individual Nanoparticles.
    Wang Y; Jing W; Tao N; Wang H
    ACS Sens; 2021 Feb; 6(2):523-529. PubMed ID: 33284583
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photothermal microscopy: optical detection of small absorbers in scattering environments.
    Vermeulen P; Cognet L; Lounis B
    J Microsc; 2014 Jun; 254(3):115-21. PubMed ID: 24749905
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inside single cells: quantitative analysis with advanced optics and nanomaterials.
    Cui Y; Irudayaraj J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(3):387-407. PubMed ID: 25430077
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy.
    Cheng CY; Liao YH; Hsieh CL
    Nanoscale; 2019 Jan; 11(2):568-577. PubMed ID: 30548049
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids.
    Sagle LB; Ruvuna LK; Bingham JM; Liu C; Cremer PS; Van Duyne RP
    J Am Chem Soc; 2012 Sep; 134(38):15832-9. PubMed ID: 22938041
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantifying fluorescence enhancement for slowly diffusing single molecules in plasmonic near fields.
    Caldarola M; Pradhan B; Orrit M
    J Chem Phys; 2018 Mar; 148(12):123334. PubMed ID: 29604841
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Revealing the dynamic adsorption and diffusion of peptide amphiphile on supported lipid bilayer by single molecule experiment and simulation.
    Chen Z; Wei W; Peng H; Jiang H; Xiong B; Zhu J
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111809. PubMed ID: 33965750
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanoparticle counting: towards accurate determination of the molar concentration.
    Shang J; Gao X
    Chem Soc Rev; 2014 Nov; 43(21):7267-78. PubMed ID: 25099190
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles.
    Wagner T; Lipinski HG; Wiemann M
    J Nanopart Res; 2014; 16(5):2419. PubMed ID: 24839395
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.
    Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C
    Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bioinspired, nanoscale approaches in contemporary bioanalytics (Review).
    Michelle Grandin H; Guillaume-Gentil O; Zambelli T; Mayer M; Houghtaling J; Palivan CG; Textor M; Höök F
    Biointerphases; 2018 Jul; 13(4):040801. PubMed ID: 30049219
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging.
    Gorman J; Fazio T; Wang F; Wind S; Greene EC
    Langmuir; 2010 Jan; 26(2):1372-9. PubMed ID: 19736980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.