BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2534555)

  • 1. Calcium-induced chromatin condensation and cyclin phosphorylation during chromatin condensation cycles in ammonia-activated sea urchin eggs.
    Patel R; Twigg J; Crossley I; Golsteyn R; Whitaker M
    J Cell Sci Suppl; 1989; 12():129-44. PubMed ID: 2534555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes.
    Sluder G; Thompson EA; Rieder CL; Miller FJ
    J Cell Biol; 1995 Jun; 129(6):1447-58. PubMed ID: 7790347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the calcium transient at NEB during the first cell cycle in dividing sea urchin eggs.
    Browne CL; Creton R; Karplus E; Mohler PJ; Palazzo RE; Miller AL
    Biol Bull; 1996 Aug; 191(1):5-16. PubMed ID: 8776840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiophosphorylated RCM-lysozyme, an active site-directed protein tyrosine phosphatase inhibitor, inhibits G2/M transition during mitotic cell cycle and uncouples MPF activation from G2/M transition.
    Hiriyanna KT; Buck WR; Shen SS; Ingebritsen TS
    Exp Cell Res; 1995 Jan; 216(1):21-9. PubMed ID: 7813623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cyclin-abundance cycle-independent p34cdc2 tyrosine phosphorylation cycle in early sea urchin embryos.
    Edgecombe M; Patel R; Whitaker M
    EMBO J; 1991 Dec; 10(12):3769-75. PubMed ID: 1834459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase.
    Meijer L; Arion D; Golsteyn R; Pines J; Brizuela L; Hunt T; Beach D
    EMBO J; 1989 Aug; 8(8):2275-82. PubMed ID: 2551679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cysteine protease activity disturbs DNA replication and prevents mitosis in the early mitotic cell cycles of sea urchin embryos.
    Concha C; Monardes A; Even Y; Morin V; Puchi M; Imschenetzky M; Genevière AM
    J Cell Physiol; 2005 Aug; 204(2):693-703. PubMed ID: 15795898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cyclin synthesis, modification and destruction in the control of cell division.
    Minshull J; Pines J; Golsteyn R; Standart N; Mackie S; Colman A; Blow J; Ruderman JV; Wu M; Hunt T
    J Cell Sci Suppl; 1989; 12():77-97. PubMed ID: 2534558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos.
    Twigg J; Patel R; Whitaker M
    Nature; 1988 Mar; 332(6162):366-9. PubMed ID: 3127728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between DNA synthesis and mitotic events in fertilized sea urchin eggs: aphidicolin inhibits DNA synthesis, nuclear breakdown and proliferation of microtubule organizing centers, but not cycles of microtubule assembly.
    Nishioka D; Balczon R; Schatten G
    Cell Biol Int Rep; 1984 Apr; 8(4):337-46. PubMed ID: 6428758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle control proteins are second messenger targets at fertilization in sea-urchin eggs.
    Whitaker MJ
    J Reprod Fertil Suppl; 1990; 42():199-204. PubMed ID: 2150204
    [No Abstract]   [Full Text] [Related]  

  • 12. eIF4E-binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs.
    Oulhen N; Mulner-Lorillon O; Cormier P
    Mol Reprod Dev; 2010 Jan; 77(1):83-91. PubMed ID: 19777548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of free calcium levels with stages of the cell division cycle.
    Poenie M; Alderton J; Tsien RY; Steinhardt RA
    Nature; 1985 May 9-15; 315(6015):147-9. PubMed ID: 3838803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal regulation of cdc2 mitotic kinase activity and cyclin degradation in cell-free extracts of Xenopus eggs.
    Felix MA; Pines J; Hunt T; Karsenti E
    J Cell Sci Suppl; 1989; 12():99-116. PubMed ID: 2561427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 6-dimethylaminopurine on microtubules and putative intermediate filaments in sea urchin embryos.
    Dufresne L; Néant I; St-Pierre J; Dubé F; Guerrier P
    J Cell Sci; 1991 Aug; 99 ( Pt 4)():721-30. PubMed ID: 1770002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphorylation of thymidine and the synthesis of histones in ammonia-treated eggs and egg fragments of the sea urchin.
    Nishioka D; Mazia D
    Cell Biol Int Rep; 1977 Jan; 1(1):23-30. PubMed ID: 565255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote.
    Hinchcliffe EH; Thompson EA; Miller FJ; Yang J; Sluder G
    J Cell Sci; 1999 Apr; 112 ( Pt 8)():1139-48. PubMed ID: 10085249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 62-kD protein required for mitotic progression is associated with the mitotic apparatus during M-phase and with the nucleus during interphase.
    Johnston JA; Sloboda RD
    J Cell Biol; 1992 Nov; 119(4):843-54. PubMed ID: 1429839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of spindle microtubules in the control of cell cycle timing.
    Sluder G
    J Cell Biol; 1979 Mar; 80(3):674-91. PubMed ID: 572367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, on the first mitotic divisions of the fertilized sea urchin egg.
    De Nadai C; Huitorel P; Chiri S; Ciapa B
    J Cell Sci; 1998 Sep; 111 ( Pt 17)():2507-18. PubMed ID: 9701550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.