These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25345684)

  • 41. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy.
    Azman NA; Peiró S; Fajarí L; Julià L; Almajano MP
    J Agric Food Chem; 2014 Jun; 62(25):5743-8. PubMed ID: 24885813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct detection of free radicals and reactive oxygen species in thylakoids.
    Hideg E; Kálai T; Hideg K
    Methods Mol Biol; 2011; 684():187-200. PubMed ID: 20960131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration.
    Song E; Xia X; Su C; Dong W; Xian Y; Wang W; Song Y
    Food Chem Toxicol; 2014 Sep; 71():122-7. PubMed ID: 24949943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scavenging effects of phenolic compounds on reactive oxygen species.
    Aboul-Enein HY; Kruk I; Kładna A; Lichszteld K; Michalska T
    Biopolymers; 2007 Jun; 86(3):222-30. PubMed ID: 17373654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of green tea extract on reactive oxygen species produced by neutrophils from cancer patients.
    Suzuki K; Ohno S; Suzuki Y; Ohno Y; Okuyama R; Aruga A; Yamamoto M; Ishihara KO; Nozaki T; Miura S; Yoshioka H; Mori Y
    Anticancer Res; 2012 Jun; 32(6):2369-75. PubMed ID: 22641677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antioxidative action of tea polyphenols: Part 1.
    Hara Y
    Am Biotechnol Lab; 1994 Jul; 12(8):48. PubMed ID: 7765013
    [No Abstract]   [Full Text] [Related]  

  • 48. Wine polyphenols and ethanol do not significantly scavenge superoxide nor affect endothelial nitric oxide production.
    Huisman A; Van De Wiel A; Rabelink TJ; Van Faassen EE
    J Nutr Biochem; 2004 Jul; 15(7):426-32. PubMed ID: 15219928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Randomized Controlled Trial of Green Tea Beverages on the in vivo Radical Scavenging Activity in Human Skin.
    Megow I; Darvin ME; Meinke MC; Lademann J
    Skin Pharmacol Physiol; 2017; 30(5):225-233. PubMed ID: 28723689
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of nitric oxide or oxygen on the stable products formed from the tyrosine phenoxyl radical.
    Folkes LK; Bartesaghi S; Trujillo M; Wardman P; Radi R
    Free Radic Res; 2021 Feb; 55(2):141-153. PubMed ID: 33399021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bond dissociation enthalpies of polyphenols: the importance of cooperative effects.
    Lucarini M; Mugnaini V; Pedulli GF
    J Org Chem; 2002 Feb; 67(3):928-31. PubMed ID: 11856039
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants.
    Jezierski A; Czechowski F; Jerzykiewicz M; Golonka I; Drozd J; Bylinska E; Chen Y; Seaward MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Apr; 58(6):1293-300. PubMed ID: 11993476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Overview on How Exercise with Green Tea Consumption Can Prevent the Production of Reactive Oxygen Species and Improve Sports Performance.
    Nobari H; Saedmocheshi S; Chung LH; Suzuki K; Maynar-Mariño M; Pérez-Gómez J
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron and its complexation by phenolic cellular metabolites: from oxidative stress to chemical weapons.
    Chobot V; Hadacek F
    Plant Signal Behav; 2010 Jan; 5(1):4-8. PubMed ID: 20592800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation, structural characterization, and thermochemistry of an isolable 4-arylphenoxyl radical.
    Porter TR; Kaminsky W; Mayer JM
    J Org Chem; 2014 Oct; 79(20):9451-4. PubMed ID: 25184812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N
    Liu Y; Shi B; Liu Z; Gao R; Huang C; Alhumade H; Wang S; Qi X; Lei A
    J Am Chem Soc; 2021 Dec; 143(49):20863-20872. PubMed ID: 34851107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Assessment of antioxidant property of drugs by electron spin resonance (ESR) spectroscopy].
    Lee MC
    Nihon Yakurigaku Zasshi; 2006 Nov; 128(5):293-7. PubMed ID: 17102572
    [No Abstract]   [Full Text] [Related]  

  • 58. Non-Thermal Plasma in Contact with Water: The Origin of Species.
    Gorbanev Y; O'Connell D; Chechik V
    Chemistry; 2016 Mar; 22(10):3496-3505. PubMed ID: 26833560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separation of tea polyphenols on paper chromatograms.
    ROBERTS EA; WOOD DJ
    Biochem J; 1953 Jan; 53(2):332-6. PubMed ID: 13032074
    [No Abstract]   [Full Text] [Related]  

  • 60. Time-Resolved EPR as a Tool to Investigate Oxygen Quenching in Photoinitiated Radical Polymerizations.
    Hristova-Neeley D; Neshchadin D; Gescheidt G
    J Phys Chem B; 2015 Oct; 119(43):13883-7. PubMed ID: 26226060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.