These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25345688)

  • 41. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x).
    Dass A; Stevenson A; Dubay GR; Tracy JB; Murray RW
    J Am Chem Soc; 2008 May; 130(18):5940-6. PubMed ID: 18393500
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aging of gold nanoparticles: ligand exchange with disulfides.
    Ma Y; Chechik V
    Langmuir; 2011 Dec; 27(23):14432-7. PubMed ID: 21985439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile synthesis of water-soluble Au(25-x)Ag(x) nanoclusters protected by mono- and bi-thiolate ligands.
    Dou X; Yuan X; Yao Q; Luo Z; Zheng K; Xie J
    Chem Commun (Camb); 2014 Jul; 50(56):7459-62. PubMed ID: 24873969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile SILAR approach to air-stable naked silver and gold nanoparticles supported by alumina.
    Stamplecoskie KG; Manser JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17489-95. PubMed ID: 25243827
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ag44(SR)30(4-): a silver-thiolate superatom complex.
    Harkness KM; Tang Y; Dass A; Pan J; Kothalawala N; Reddy VJ; Cliffel DE; Demeler B; Stellacci F; Bakr OM; McLean JA
    Nanoscale; 2012 Jul; 4(14):4269-74. PubMed ID: 22706613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF(4):Yb(3+)/Er(3+) nanoparticles.
    Johnson NJ; Sangeetha NM; Boyer JC; van Veggel FC
    Nanoscale; 2010 May; 2(5):771-7. PubMed ID: 20648323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metallic-Nanoparticle-Based Sensing: Utilization of Mixed-Ligand Monolayers.
    Zeiri O
    ACS Sens; 2020 Dec; 5(12):3806-3820. PubMed ID: 33241680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controlling transport and chemical functionality of magnetic nanoparticles.
    Latham AH; Williams ME
    Acc Chem Res; 2008 Mar; 41(3):411-20. PubMed ID: 18251514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasound-mediated synthesis of high-molecular weight polystyrene-grafted silver nanoparticles by facile ligand exchange reactions in suspension.
    Pletsch H; Peng L; Mitschang F; Schaper A; Hellwig M; Nette D; Seubert A; Greiner A; Agarwal S
    Small; 2014 Jan; 10(1):201-8. PubMed ID: 24038884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry.
    Marquis BJ; Liu Z; Braun KL; Haynes CL
    Analyst; 2011 Sep; 136(17):3478-86. PubMed ID: 21170444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zinc-bound thiolate-disulfide exchange: a strategy for inhibiting metallo-beta-lactamases.
    Boerzel H; Koeckert M; Bu W; Spingler B; Lippard SJ
    Inorg Chem; 2003 Mar; 42(5):1604-15. PubMed ID: 12611529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Platinum(II) complexes of N^C^N-coordinating 1,3-bis(2-pyridyl)benzene ligands: thiolate coligands lead to strong red luminescence from charge-transfer states.
    Tarran WA; Freeman GR; Murphy L; Benham AM; Kataky R; Williams JA
    Inorg Chem; 2014 Jun; 53(11):5738-49. PubMed ID: 24848618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Trapping a [W
    Yu JQ; Xue CH; Zhou K; Fang Y; Ji JY; Chen BK; Bi YF
    Chem Asian J; 2022 Apr; 17(8):e202200072. PubMed ID: 35191620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.
    Smetana AB; Klabunde KJ; Sorensen CM; Ponce AA; Mwale B
    J Phys Chem B; 2006 Feb; 110(5):2155-8. PubMed ID: 16471798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deterministic growth of AgTCNQ and CuTCNQ nanowires on large-area reduced graphene oxide films for flexible optoelectronics.
    Zhang S; Lu Z; Gu L; Cai L; Cao X
    Nanotechnology; 2013 Nov; 24(46):465202. PubMed ID: 24158776
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion.
    Wegner K; Vinati S; Piseri P; Antonini A; Zelioli A; Barborini E; Ducati C; Milani P
    Nanotechnology; 2012 May; 23(18):185603. PubMed ID: 22516767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.
    Glover RD; Miller JM; Hutchison JE
    ACS Nano; 2011 Nov; 5(11):8950-7. PubMed ID: 21985489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thiolate-protected Ag₃₂ clusters: mass spectral studies of composition and insights into the Ag-thiolate structure from NMR.
    Udayabhaskararao T; Bootharaju MS; Pradeep T
    Nanoscale; 2013 Oct; 5(19):9404-11. PubMed ID: 23959065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.