These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 25345758)
1. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Zhang E; Cai Y; Luo Y; Piao Z Can J Microbiol; 2014 Nov; 60(11):753-9. PubMed ID: 25345758 [TBL] [Abstract][Full Text] [Related]
2. Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis. Pankratova G; Leech D; Gorton L; Hederstedt L Biochemistry; 2018 Jul; 57(30):4597-4603. PubMed ID: 29989403 [TBL] [Abstract][Full Text] [Related]
3. Two Routes for Extracellular Electron Transfer in Enterococcus faecalis. Hederstedt L; Gorton L; Pankratova G J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932308 [No Abstract] [Full Text] [Related]
4. Extracellular electron transfer features of Gram-positive bacteria. Pankratova G; Hederstedt L; Gorton L Anal Chim Acta; 2019 Oct; 1076():32-47. PubMed ID: 31203962 [TBL] [Abstract][Full Text] [Related]
5. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263 [TBL] [Abstract][Full Text] [Related]
6. The effect of flavin electron shuttles in microbial fuel cells current production. Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021 [TBL] [Abstract][Full Text] [Related]
7. Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power. Yang Y; Choi C; Xie G; Park JD; Ke S; Yu JS; Zhou J; Lim B Bioelectrochemistry; 2019 Jun; 127():94-103. PubMed ID: 30771661 [TBL] [Abstract][Full Text] [Related]
8. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Chung K; Okabe S Biotechnol Bioeng; 2009 Dec; 104(5):901-10. PubMed ID: 19575435 [TBL] [Abstract][Full Text] [Related]
9. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells. Pinto D; Coradin T; Laberty-Robert C Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011 [TBL] [Abstract][Full Text] [Related]
10. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell. Hassan MM; Cheng KY; Ho G; Cord-Ruwisch R Biosens Bioelectron; 2017 Jan; 87():531-536. PubMed ID: 27606880 [TBL] [Abstract][Full Text] [Related]
11. The utility of Shewanella japonica for microbial fuel cells. Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660 [TBL] [Abstract][Full Text] [Related]
12. Probing electron transfer with Escherichia coli: a method to examine exoelectronics in microbial fuel cell type systems. Sugnaux M; Mermoud S; da Costa AF; Happe M; Fischer F Bioresour Technol; 2013 Nov; 148():567-73. PubMed ID: 24080296 [TBL] [Abstract][Full Text] [Related]
13. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells. Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599 [TBL] [Abstract][Full Text] [Related]
14. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182 [TBL] [Abstract][Full Text] [Related]
16. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Masuda M; Freguia S; Wang YF; Tsujimura S; Kano K Bioelectrochemistry; 2010 Jun; 78(2):173-5. PubMed ID: 19717350 [TBL] [Abstract][Full Text] [Related]
17. Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Wrighton KC; Thrash JC; Melnyk RA; Bigi JP; Byrne-Bailey KG; Remis JP; Schichnes D; Auer M; Chang CJ; Coates JD Appl Environ Microbiol; 2011 Nov; 77(21):7633-9. PubMed ID: 21908627 [TBL] [Abstract][Full Text] [Related]
18. High power density redox-mediated Shewanella microbial flow fuel cells. Zhang L; Zhang Y; Liu Y; Wang S; Lee CK; Huang Y; Duan X Nat Commun; 2024 Sep; 15(1):8302. PubMed ID: 39333111 [TBL] [Abstract][Full Text] [Related]
19. Initial development and structure of biofilms on microbial fuel cell anodes. Read ST; Dutta P; Bond PL; Keller J; Rabaey K BMC Microbiol; 2010 Apr; 10():98. PubMed ID: 20356407 [TBL] [Abstract][Full Text] [Related]
20. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor. Ducommun R; Favre MF; Carrard D; Fischer F Yeast; 2010 Mar; 27(3):139-48. PubMed ID: 19946948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]