BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25346145)

  • 1. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.
    Iqtedar M; Nadeem M; Naeem H; Abdullah R; Naz S; Qurat ul Ain Syed ; Kaleem A
    Nat Prod Res; 2015; 29(11):1012-9. PubMed ID: 25346145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimisation for the biosynthesis of cellulase by Bacillus PC-BC6 and its mutant derivative Bacillus N3 using submerged fermentation.
    Abdullah R; Zafar W; Nadeem M; Iqtedar M; Naz S; Syed Q; Kaleem A
    Nat Prod Res; 2015; 29(12):1133-8. PubMed ID: 25421057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor.
    Lan TQ; Wei D; Yang ST; Liu X
    Bioresour Technol; 2013 Apr; 133():175-82. PubMed ID: 23428816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random mutagenesis and media optimisation for hyperproduction of cellulase from Bacillus species using proximally analysed Saccharum spontaneum in submerged fermentation.
    Abdullah R; Zafar W; Nadeem M; Iqtedar M; Naz S; Syed Q; Butt ZA
    Nat Prod Res; 2015; 29(4):336-44. PubMed ID: 25142026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition of Synthesized Cellulolytic Enzymes Varied with the Usage of Agricultural Substrates and Microorganisms.
    Kshirsagar S; Waghmare P; Saratale G; Saratale R; Kurade M; Jeon BH; Govindwar S
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1695-1710. PubMed ID: 32206967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass.
    Gasparotto JM; Werle LB; Foletto EL; Kuhn RC; Jahn SL; Mazutti MA
    Appl Biochem Biotechnol; 2015 Jan; 175(1):560-72. PubMed ID: 25331378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.
    Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation.
    Xin F; Geng A
    Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic Saccharification of Lignocellulosic Residues by Cellulases Obtained from Solid State Fermentation Using Trichoderma viride.
    Sartori T; Tibolla H; Prigol E; Colla LM; Costa JA; Bertolin TE
    Biomed Res Int; 2015; 2015():342716. PubMed ID: 26137476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application.
    Saini R; Saini JK; Adsul M; Patel AK; Mathur A; Tuli D; Singhania RR
    Bioresour Technol; 2015; 188():240-6. PubMed ID: 25661515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production.
    Kataria R; Ghosh S
    Bioresour Technol; 2011 Nov; 102(21):9970-5. PubMed ID: 21907576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemo-enzymatic approaches for consolidated bioconversion of Saccharum spontaneum biomass to ethanol-biofuel.
    Vaid S; Sharma S; Bajaj BK
    Bioresour Technol; 2021 Jun; 329():124898. PubMed ID: 33691204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation.
    Lever M; Ho G; Cord-Ruwisch R
    Bioresour Technol; 2010 Sep; 101(18):7094-8. PubMed ID: 20430612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative process of bioconversion of oil palm empty fruit bunch fiber to ethanol with on-site cellulase production.
    Zhu Y; Xin F; Zhao Y; Chang Y
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2317-24. PubMed ID: 24839153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3.
    Chandel AK; Narasu ML; Chandrasekhar G; Manikyam A; Rao LV
    Bioresour Technol; 2009 Apr; 100(8):2404-10. PubMed ID: 19114303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation.
    Zhi Z; Wang H
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1447-58. PubMed ID: 24429553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates.
    Shin CS; Lee JP; Lee JS; Park SC
    Appl Biochem Biotechnol; 2000; 84-86():237-45. PubMed ID: 10849792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production.
    Chaudhary G; Singh LK; Ghosh S
    Bioresour Technol; 2012 Nov; 124():111-8. PubMed ID: 22985852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.