BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25346157)

  • 41. Task2 potassium channels set central respiratory CO2 and O2 sensitivity.
    Gestreau C; Heitzmann D; Thomas J; Dubreuil V; Bandulik S; Reichold M; Bendahhou S; Pierson P; Sterner C; Peyronnet-Roux J; Benfriha C; Tegtmeier I; Ehnes H; Georgieff M; Lesage F; Brunet JF; Goridis C; Warth R; Barhanin J
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2325-30. PubMed ID: 20133877
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity.
    Guyenet PG
    J Appl Physiol (1985); 2008 Aug; 105(2):404-16. PubMed ID: 18535135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vascular control of the CO
    Cleary CM; Moreira TS; Takakura AC; Nelson MT; Longden TA; Mulkey DK
    Elife; 2020 Sep; 9():. PubMed ID: 32924935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors.
    Guyenet PG; Stornetta RL; Bayliss DA; Mulkey DK
    Exp Physiol; 2005 May; 90(3):247-53; discussion 253-7. PubMed ID: 15728136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Central chemoreception: lessons from mouse and human genetics.
    Goridis C; Brunet JF
    Respir Physiol Neurobiol; 2010 Oct; 173(3):312-21. PubMed ID: 20307691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats.
    Wu J; Xu H; Shen W; Jiang C
    J Membr Biol; 2004 Feb; 197(3):179-91. PubMed ID: 15042349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Galanin is a selective marker of the retrotrapezoid nucleus in rats.
    Stornetta RL; Spirovski D; Moreira TS; Takakura AC; West GH; Gwilt JM; Pilowsky PM; Guyenet PG
    J Comp Neurol; 2009 Jan; 512(3):373-83. PubMed ID: 19006184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The pH-Sensitive Potassium Channel TASK-1 Is a Chemosensor for Central Respiratory Regulation in Rats].
    Li QQ; Wan KX; Xu MS; Wang LM; Zhang YY; Wang CT; Mao FX; Zhu JL; Pan ZM; Gao R
    Mol Biol (Mosk); 2020; 54(3):457-468. PubMed ID: 32492009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus.
    Kuo FS; Falquetto B; Chen D; Oliveira LM; Takakura AC; Mulkey DK
    J Neurophysiol; 2016 Sep; 116(3):1024-35. PubMed ID: 27306669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO₂.
    Ruffault PL; D'Autréaux F; Hayes JA; Nomaksteinsky M; Autran S; Fujiyama T; Hoshino M; Hägglund M; Kiehn O; Brunet JF; Fortin G; Goridis C
    Elife; 2015 Apr; 4():. PubMed ID: 25866925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Astrocyte chemoreceptors: mechanisms of H+ sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive.
    Mulkey DK; Wenker IC
    Exp Physiol; 2011 Apr; 96(4):400-6. PubMed ID: 21169332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons.
    Burgos P; Zúñiga R; Domínguez P; Delgado-López F; Plant LD; Zúñiga L
    Biochem Biophys Res Commun; 2014 Oct; 453(4):754-60. PubMed ID: 25305496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impaired central respiratory chemoreflex in an experimental genetic model of epilepsy.
    Totola LT; Takakura AC; Oliveira JA; Garcia-Cairasco N; Moreira TS
    J Physiol; 2017 Feb; 595(3):983-999. PubMed ID: 27633663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TASK1 and TASK3 in orexin neuron of lateral hypothalamus contribute to respiratory chemoreflex by projecting to nucleus tractus solitarius.
    Wang X; Guan R; Zhao X; Chen J; Zhu D; Shen L; Song N
    FASEB J; 2021 May; 35(5):e21532. PubMed ID: 33817828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retrotrapezoid nucleus and central chemoreception.
    Guyenet PG; Stornetta RL; Bayliss DA
    J Physiol; 2008 Apr; 586(8):2043-8. PubMed ID: 18308822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The respiratory chemoreception conundrum: light at the end of the tunnel?
    Guyenet PG; Abbott SB; Stornetta RL
    Brain Res; 2013 May; 1511():126-37. PubMed ID: 23088963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration.
    Cotten JF; Keshavaprasad B; Laster MJ; Eger EI; Yost CS
    Anesth Analg; 2006 Mar; 102(3):779-85. PubMed ID: 16492828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A pH-sensitive potassium conductance (TASK) and its function in the murine gastrointestinal tract.
    Cho SY; Beckett EA; Baker SA; Han I; Park KJ; Monaghan K; Ward SM; Sanders KM; Koh SD
    J Physiol; 2005 May; 565(Pt 1):243-59. PubMed ID: 15774516
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptation of Respiratory-Related Brain Regions to Long-Term Hypercapnia: Focus on Neuropeptides in the RTN.
    Dereli AS; Yaseen Z; Carrive P; Kumar NN
    Front Neurosci; 2019; 13():1343. PubMed ID: 31920508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.