BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25346180)

  • 41. Construction of a FRET-based ratiometric fluorescent thiol probe.
    Long L; Lin W; Chen B; Gao W; Yuan L
    Chem Commun (Camb); 2011 Jan; 47(3):893-5. PubMed ID: 21072403
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe.
    Gabe Y; Urano Y; Kikuchi K; Kojima H; Nagano T
    J Am Chem Soc; 2004 Mar; 126(10):3357-67. PubMed ID: 15012166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Cell-Surface-Specific Ratiometric Fluorescent Probe for Extracellular pH Sensing with Solid-State Fluorophore.
    Yang Y; Xia M; Zhao H; Zhang S; Zhang X
    ACS Sens; 2018 Nov; 3(11):2278-2285. PubMed ID: 30350591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Micelle nanoparticles for FRET-based ratiometric sensing of mercury ions in water, biological fluids and living cells.
    Ma B; Xu M; Zeng F; Huang L; Wu S
    Nanotechnology; 2011 Feb; 22(6):065501. PubMed ID: 21212478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A FRET-based ratiometric fluorescent probe for nitroxyl detection in living cells.
    Zhang H; Liu R; Tan Y; Xie WH; Lei H; Cheung HY; Sun H
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5438-43. PubMed ID: 25658137
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping.
    Du F; Ming Y; Zeng F; Yu C; Wu S
    Nanotechnology; 2013 Sep; 24(36):365101. PubMed ID: 23942146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly selective ratiometric fluorescent probes for the detection of Fe
    Li C; Sun Q; Zhao Q; Cheng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117720. PubMed ID: 31718969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly water-soluble BODIPY-based fluorescent probe for sensitive and selective detection of nitric oxide in living cells.
    Vegesna GK; Sripathi SR; Zhang J; Zhu S; He W; Luo FT; Jahng WJ; Frost M; Liu H
    ACS Appl Mater Interfaces; 2013 May; 5(10):4107-12. PubMed ID: 23614822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A boron-dipyrromethene-based fluorescent probe for colorimetric and ratiometric detection of sulfite.
    Gu X; Liu C; Zhu YC; Zhu YZ
    J Agric Food Chem; 2011 Nov; 59(22):11935-9. PubMed ID: 21999770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A ratiometric fluorescent probe based on a BODIPY-DCDHF conjugate for the detection of hypochlorous acid in living cells.
    Park J; Kim H; Choi Y; Kim Y
    Analyst; 2013 Jun; 138(12):3368-71. PubMed ID: 23629010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of BODIPY FL Thalidomide As a High-Affinity Fluorescent Probe for Cereblon in a Time-Resolved Fluorescence Resonance Energy Transfer Assay.
    Lin W; Li Y; Min J; Liu J; Yang L; Lee RE; Chen T
    Bioconjug Chem; 2020 Nov; 31(11):2564-2575. PubMed ID: 33070611
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficiency of energy transfer from organic dye molecules to CdSe-ZnS nanocrystals: nanorods versus nanodots.
    Artemyev M; Ustinovich E; Nabiev I
    J Am Chem Soc; 2009 Jun; 131(23):8061-5. PubMed ID: 19507903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine.
    Shao J; Guo H; Ji S; Zhao J
    Biosens Bioelectron; 2011 Feb; 26(6):3012-7. PubMed ID: 21195598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds.
    Ma C; Zeng F; Huang L; Wu S
    J Phys Chem B; 2011 Feb; 115(5):874-82. PubMed ID: 21250732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thiol reactive probe based on fluorescence resonance energy transfer between fluorescein and Au nanoparticles.
    Qi L; Song J; Wu FY; Wan YQ
    Acta Chim Slov; 2014; 61(1):73-9. PubMed ID: 24664329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a BODIPY-based ratiometric fluorescent probe for hypochlorous acid and its application in living cells.
    Wang X; Zhou L; Qiang F; Wang F; Wang R; Zhao C
    Anal Chim Acta; 2016 Mar; 911():114-120. PubMed ID: 26893093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.
    Ma J; Ding C; Zhou J; Tian Y
    Biosens Bioelectron; 2015 Aug; 70():202-8. PubMed ID: 25841116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A boron difluoride dye showing the aggregation-induced emission feature and high sensitivity to intra- and extra-cellular pH changes.
    Wu D; Shao L; Li Y; Hu Q; Huang F; Yu G; Tang G
    Chem Commun (Camb); 2016 Jan; 52(3):541-4. PubMed ID: 26537000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly selective and ratiometric fluorescent nanoprobe for the detection of cysteine and its application in test strips.
    Wang F; Zhu Y; Xu J; Xu Z; Cheng G; Zhang W
    Anal Bioanal Chem; 2018 Aug; 410(20):4875-4884. PubMed ID: 29748760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing.
    Fan J; Hu M; Zhan P; Peng X
    Chem Soc Rev; 2013 Jan; 42(1):29-43. PubMed ID: 23059554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.