These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25346449)
1. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Burton ED; Johnston SG; Kocar BD Environ Sci Technol; 2014 Dec; 48(23):13660-7. PubMed ID: 25346449 [TBL] [Abstract][Full Text] [Related]
2. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations. Hashimoto Y; Kanke Y Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173 [TBL] [Abstract][Full Text] [Related]
3. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Weber FA; Hofacker AF; Voegelin A; Kretzschmar R Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741 [TBL] [Abstract][Full Text] [Related]
4. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
5. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262 [TBL] [Abstract][Full Text] [Related]
6. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
7. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition. Niazi NK; Burton ED Environ Pollut; 2016 Nov; 218():111-117. PubMed ID: 27552044 [TBL] [Abstract][Full Text] [Related]
8. The impact of oscillating redox conditions: arsenic immobilisation in contaminated calcareous floodplain soils. Parsons CT; Couture RM; Omoregie EO; Bardelli F; Greneche JM; Roman-Ross G; Charlet L Environ Pollut; 2013 Jul; 178():254-63. PubMed ID: 23587855 [TBL] [Abstract][Full Text] [Related]
9. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864 [TBL] [Abstract][Full Text] [Related]
10. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533 [TBL] [Abstract][Full Text] [Related]
11. Arsenic mitigation in paddy soils by using microbial fuel cells. Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474 [TBL] [Abstract][Full Text] [Related]
12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
13. As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: A mechanistic study. Phan VTH; Bernier-Latmani R; Tisserand D; Bardelli F; Le Pape P; Frutschi M; Gehin A; Couture RM; Charlet L Sci Total Environ; 2019 May; 663():718-730. PubMed ID: 30731417 [TBL] [Abstract][Full Text] [Related]
14. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia. Kinsela AS; Collins RN; Waite TD Chemosphere; 2011 Feb; 82(6):879-87. PubMed ID: 21094969 [TBL] [Abstract][Full Text] [Related]
15. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Yamaguchi N; Ohkura T; Takahashi Y; Maejima Y; Arao T Environ Sci Technol; 2014; 48(3):1549-56. PubMed ID: 24384039 [TBL] [Abstract][Full Text] [Related]
16. [Speciation transformation and behavior of arsenic in soils under anoxic conditions]. Wu X; Xu LY; Zhang XX; Song Y; Wang X; Jia YF Huan Jing Ke Xue; 2012 Jan; 33(1):273-9. PubMed ID: 22452222 [TBL] [Abstract][Full Text] [Related]
17. [Variations of arsenic species in the solution of arsenic-contaminated paddy soil under flooding and at different temperatures]. Wang Z; Cui JH; Chen Z; Lu XJ; Liu WJ Ying Yong Sheng Tai Xue Bao; 2013 May; 24(5):1415-22. PubMed ID: 24015564 [TBL] [Abstract][Full Text] [Related]
18. Arsenic mobilization in a seawater inundated acid sulfate soil. Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899 [TBL] [Abstract][Full Text] [Related]
19. X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation. Jeong HY; Han YS; Hayes KF Environ Sci Technol; 2010 Feb; 44(3):955-61. PubMed ID: 20041638 [TBL] [Abstract][Full Text] [Related]