These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25346498)

  • 21. Spiers memorial lecture. Organic electronics: an organic materials perspective.
    Wudl F
    Faraday Discuss; 2014; 174():9-20. PubMed ID: 25354490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in Isoindigo-Inspired Organic Semiconductors.
    Randell NM; Kelly TL
    Chem Rec; 2019 Jun; 19(6):973-988. PubMed ID: 30375156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing Trap-Assisted Recombination in Small Organic Molecule-Based Photovoltaics by the Addition of a Conjugated Block Copolymer.
    Cho K; Kim J; Yoon SY; Ryu KY; Jang SR; Lim B; Kim K
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29218755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors.
    Bulumulla C; Gunawardhana R; Gamage PL; Miller JT; Kularatne RN; Biewer MC; Stefan MC
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32209-32232. PubMed ID: 32584535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperbranched Polymers for Organic Semiconductors.
    Zhou Z; Luo N; Shao X; Zhang HL; Liu Z
    Chempluschem; 2023 Jul; 88(7):e202300261. PubMed ID: 37377071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and Application of Rylene Imide Dyes as Organic Semiconducting Materials.
    Feng J; Jiang W; Wang Z
    Chem Asian J; 2018 Jan; 13(1):20-30. PubMed ID: 29143473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 5, 10-linked naphthodithiophenes as the building block for semiconducting polymers.
    Osaka I; Komatsu K; Koganezawa T; Takimiya K
    Sci Technol Adv Mater; 2014 Apr; 15(2):024201. PubMed ID: 27877654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications.
    Zhang L; Cao Y; Colella NS; Liang Y; Brédas JL; Houk KN; Briseno AL
    Acc Chem Res; 2015 Mar; 48(3):500-9. PubMed ID: 25458442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance organic field-effect transistors: molecular design, device fabrication, and physical properties.
    Di CA; Yu G; Liu Y; Zhu D
    J Phys Chem B; 2007 Dec; 111(51):14083-96. PubMed ID: 18052267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene as an electrode for solution-processed electron-transporting organic transistors.
    Parui S; Ribeiro M; Atxabal A; Llopis R; Casanova F; Hueso LE
    Nanoscale; 2017 Jul; 9(29):10178-10185. PubMed ID: 28517016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.
    Głowacki ED; Voss G; Sariciftci NS
    Adv Mater; 2013 Dec; 25(47):6783-800. PubMed ID: 24151199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance Comparisons of Polymer Semiconductors Synthesized by Direct (Hetero)Arylation Polymerization (DHAP) and Conventional Methods for Organic Thin Film Transistors and Organic Photovoltaics.
    Hendsbee AD; Li Y
    Molecules; 2018 May; 23(6):. PubMed ID: 29794982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current challenges in organic photovoltaic solar energy conversion.
    Schlenker CW; Thompson ME
    Top Curr Chem; 2012; 312():175-212. PubMed ID: 21837556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress in the synthesis of imide-based N-type polymer semiconductor materials.
    Liao M; Duan J; Peng P; Zhang J; Zhou M
    RSC Adv; 2020 Nov; 10(68):41764-41779. PubMed ID: 35516572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications.
    Yue Q; Liu W; Zhu X
    J Am Chem Soc; 2020 Jul; 142(27):11613-11628. PubMed ID: 32460485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Function Relationship of Organic Semiconductors: Detailed Insights From Time-Resolved EPR Spectroscopy.
    Biskup T
    Front Chem; 2019; 7():10. PubMed ID: 30775359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel small molecules for organic field-effect transistors: towards processability and high performance.
    Mas-Torrent M; Rovira C
    Chem Soc Rev; 2008 Apr; 37(4):827-38. PubMed ID: 18362986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-mobility semiconducting naphthodithiophene copolymers.
    Osaka I; Abe T; Shinamura S; Miyazaki E; Takimiya K
    J Am Chem Soc; 2010 Apr; 132(14):5000-1. PubMed ID: 20297819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.
    Zhang C; Chen P; Hu W
    Small; 2016 Mar; 12(10):1252-94. PubMed ID: 26833896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Doping: A Key Enabler for Organic Transistors.
    Xu Y; Sun H; Liu A; Zhu HH; Li W; Lin YF; Noh YY
    Adv Mater; 2018 Nov; 30(46):e1801830. PubMed ID: 30101530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.