These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 25346796)
1. Exploring vortex enhancement and manipulation mechanisms in jellyfish that contributes to energetically efficient propulsion. Gemmell BJ; Costello JH; Colin SP Commun Integr Biol; 2014; 7():e29014. PubMed ID: 25346796 [TBL] [Abstract][Full Text] [Related]
2. The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance. Gemmell BJ; Du Clos KT; Colin SP; Sutherland KR; Costello JH Proc Biol Sci; 2021 Jan; 288(1942):20202494. PubMed ID: 33402068 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry. Babu MN; Mallikarjuna JM; Krishnankutty P Robotics Biomim; 2016; 3():3. PubMed ID: 27077022 [TBL] [Abstract][Full Text] [Related]
4. Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Drucker EG; Lauder GV Integr Comp Biol; 2002 Apr; 42(2):243-57. PubMed ID: 21708716 [TBL] [Abstract][Full Text] [Related]
5. A ctenophore (comb jelly) employs vortex rebound dynamics and outperforms other gelatinous swimmers. Gemmell BJ; Colin SP; Costello JH; Sutherland KR R Soc Open Sci; 2019 Mar; 6(3):181615. PubMed ID: 31032019 [TBL] [Abstract][Full Text] [Related]
6. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Gemmell BJ; Costello JH; Colin SP; Stewart CJ; Dabiri JO; Tafti D; Priya S Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17904-9. PubMed ID: 24101461 [TBL] [Abstract][Full Text] [Related]
7. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first. Bartol IK; Krueger PS; Jastrebsky RA; Williams S; Thompson JT J Exp Biol; 2016 Feb; 219(Pt 3):392-403. PubMed ID: 26643088 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of vortex formation and thrust performance in drag-based paddling propulsion. Kim D; Gharib M J Exp Biol; 2011 Jul; 214(Pt 13):2283-91. PubMed ID: 21653822 [TBL] [Abstract][Full Text] [Related]
9. The Hydrodynamics of Jellyfish Swimming. Costello JH; Colin SP; Dabiri JO; Gemmell BJ; Lucas KN; Sutherland KR Ann Rev Mar Sci; 2021 Jan; 13():375-396. PubMed ID: 32600216 [TBL] [Abstract][Full Text] [Related]
10. Undulating fins produce off-axis thrust and flow structures. Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799 [TBL] [Abstract][Full Text] [Related]
11. Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish Neil TR; Askew GN J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348647 [TBL] [Abstract][Full Text] [Related]
12. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion. Li N; Liu H; Su Y PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836 [TBL] [Abstract][Full Text] [Related]
13. Propulsive force calculations in swimming frogs. II. Application of a vortex ring model to DPIV data. Stamhuis EJ; Nauwelaerts S J Exp Biol; 2005 Apr; 208(Pt 8):1445-51. PubMed ID: 15802668 [TBL] [Abstract][Full Text] [Related]
14. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors. Calvet AG; Dave M; Franck JA Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842 [TBL] [Abstract][Full Text] [Related]
15. Control of vortex rings for manoeuvrability. Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency. Bartol IK; Krueger PS; Stewart WJ; Thompson JT J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007 [TBL] [Abstract][Full Text] [Related]
17. Hydrodynamics of surface swimming in leopard frogs (Rana pipiens). Johansson LC; Lauder GV J Exp Biol; 2004 Oct; 207(Pt 22):3945-58. PubMed ID: 15472025 [TBL] [Abstract][Full Text] [Related]
18. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. Tytell ED J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809 [TBL] [Abstract][Full Text] [Related]
19. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. Drucker EG; Lauder GV J Exp Biol; 2005 Dec; 208(Pt 23):4479-94. PubMed ID: 16339868 [TBL] [Abstract][Full Text] [Related]
20. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. Lauder GV; Madden PG; Mittal R; Dong H; Bozkurttas M Bioinspir Biomim; 2006 Dec; 1(4):S25-34. PubMed ID: 17671315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]