These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25347210)

  • 1. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array.
    Shrestha VR; Lee SS; Kim ES; Choi DY
    Nano Lett; 2014 Nov; 14(11):6672-8. PubMed ID: 25347210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array.
    Raj Shrestha V; Lee SS; Kim ES; Choi DY
    Sci Rep; 2015 Jul; 5():12450. PubMed ID: 26211625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures.
    James TD; Mulvaney P; Roberts A
    Nano Lett; 2016 Jun; 16(6):3817-23. PubMed ID: 27164410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-Controlled Broad Color Palette Based on an Ultrathin One-Dimensional Resonant Grating Structure.
    Koirala I; Shrestha VR; Park CS; Lee SS; Choi DY
    Sci Rep; 2017 Jan; 7():40073. PubMed ID: 28067264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual mode operation, highly selective nanohole array-based plasmonic colour filters.
    Mahani FF; Mokhtari A; Mehran M
    Nanotechnology; 2017 Sep; 28(38):385203. PubMed ID: 28726686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-Reflective Color Filters Based on a Phase Compensated Etalon Enabling Adjustable Color Saturation.
    Park CS; Shrestha VR; Lee SS; Choi DY
    Sci Rep; 2016 May; 6():25496. PubMed ID: 27150979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO
    Koirala I; Lee SS; Choi DY
    Opt Express; 2018 Jul; 26(14):18320-18330. PubMed ID: 30114013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice.
    Dai P; Wang Y; Zhu X; Shi H; Chen Y; Zhang S; Yang W; Chen Z; Xiao S; Duan H
    Nanotechnology; 2018 Sep; 29(39):395202. PubMed ID: 29972380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette.
    Li Z; Clark AW; Cooper JM
    ACS Nano; 2016 Jan; 10(1):492-8. PubMed ID: 26631346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity.
    Yue W; Gao S; Lee SS; Kim ES; Choi DY
    Sci Rep; 2016 Jul; 6():29756. PubMed ID: 27407024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking.
    Duempelmann L; Casari D; Luu-Dinh A; Gallinet B; Novotny L
    ACS Nano; 2015 Dec; 9(12):12383-91. PubMed ID: 26498131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional transmissive structural colors for high-security information encryption.
    Yan J; Guo J; Qu K; Li RZ
    Appl Opt; 2024 Feb; 63(5):1340-1346. PubMed ID: 38437314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission.
    Hu XL; Sun LB; Zeng B; Wang LS; Yu ZG; Bai SA; Yang SM; Zhao LX; Li Q; Qiu M; Tai RZ; Fecht HJ; Jiang JZ; Zhang DX
    Appl Opt; 2016 Jan; 55(1):148-52. PubMed ID: 26835634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks.
    Park CS; Shrestha VR; Yue W; Gao S; Lee SS; Kim ES; Choi DY
    Sci Rep; 2017 May; 7(1):2556. PubMed ID: 28566739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearly Perfect Transmissive Subtractive Coloration through the Spectral Amplification of Mie Scattering and Lattice Resonance.
    Lee T; Kim J; Koirala I; Yang Y; Badloe T; Jang J; Rho J
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26299-26307. PubMed ID: 34048213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Plasmonic Painter's Method of Color Mixing for a Continuous Red-Green-Blue Palette.
    Hail CU; Schnoering G; Damak M; Poulikakos D; Eghlidi H
    ACS Nano; 2020 Feb; 14(2):1783-1791. PubMed ID: 32003976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible High-Color-Purity Structural Color Filters Based on a Higher-Order Optical Resonance Suppression.
    Lee KT; Han SY; Li Z; Baac HW; Park HJ
    Sci Rep; 2019 Oct; 9(1):14917. PubMed ID: 31624284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters.
    Zeng B; Gao Y; Bartoli FJ
    Sci Rep; 2013 Oct; 3():2840. PubMed ID: 24100869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically tunable transmissive color filters using ultra-thin phase change materials.
    He Q; Youngblood N; Cheng Z; Miao X; Bhaskaran H
    Opt Express; 2020 Dec; 28(26):39841-39849. PubMed ID: 33379525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the broad CMY subtractive primary color gamut using a dual-active electrochromic device.
    Bulloch RH; Kerszulis JA; Dyer AL; Reynolds JR
    ACS Appl Mater Interfaces; 2014 May; 6(9):6623-30. PubMed ID: 24746185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.