These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25347293)

  • 1. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly.
    Hanske C; Tebbe M; Kuttner C; Bieber V; Tsukruk VV; Chanana M; König TA; Fery A
    Nano Lett; 2014 Dec; 14(12):6863-71. PubMed ID: 25347293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscopic Strain-Induced Transition from Quasi-infinite Gold Nanoparticle Chains to Defined Plasmonic Oligomers.
    Steiner AM; Mayer M; Seuss M; Nikolov S; Harris KD; Alexeev A; Kuttner C; König TAF; Fery A
    ACS Nano; 2017 Sep; 11(9):8871-8880. PubMed ID: 28719741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas.
    Tebbe M; Mayer M; Glatz BA; Hanske C; Probst PT; Müller MB; Karg M; Chanana M; König TA; Kuttner C; Fery A
    Faraday Discuss; 2015; 181(1):243-60. PubMed ID: 25951174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains.
    Mayer M; Potapov PL; Pohl D; Steiner AM; Schultz J; Rellinghaus B; Lubk A; König TAF; Fery A
    Nano Lett; 2019 Jun; 19(6):3854-3862. PubMed ID: 31117756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces.
    Mayer M; Tebbe M; Kuttner C; Schnepf MJ; König TA; Fery A
    Faraday Discuss; 2016 Oct; 191(1):159-176. PubMed ID: 27411967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond.
    Li Y; Deng Z
    Acc Chem Res; 2019 Dec; 52(12):3442-3454. PubMed ID: 31742388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating.
    Sarkar S; Gupta V; Kumar M; Schubert J; Probst PT; Joseph J; König TAF
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13752-13760. PubMed ID: 30874424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices.
    Charconnet M; Korsa MT; Petersen S; Plou J; Hanske C; Adam J; Seifert A
    Small Methods; 2023 Apr; 7(4):e2201546. PubMed ID: 36807876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic polymers unraveled through single particle spectroscopy.
    Slaughter LS; Wang LY; Willingham BA; Olson JM; Swanglap P; Dominguez-Medina S; Link S
    Nanoscale; 2014 Oct; 6(19):11451-61. PubMed ID: 25155111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultranarrow SPR linewidth in the UV region for plasmonic sensing.
    Zheng J; Yang W; Wang J; Zhu J; Qian L; Yang Z
    Nanoscale; 2019 Mar; 11(9):4061-4066. PubMed ID: 30776034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly.
    Yu Y; Ng C; König TAF; Fery A
    Langmuir; 2019 Jul; 35(26):8629-8645. PubMed ID: 30883131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures.
    Chang WS; Slaughter LS; Khanal BP; Manna P; Zubarev ER; Link S
    Nano Lett; 2009 Mar; 9(3):1152-7. PubMed ID: 19193117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings.
    Seçkin S; Singh P; Jaiswal A; König TAF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43124-43134. PubMed ID: 37665350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Few-Molecule Strong Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA.
    Heintz J; Markešević N; Gayet EY; Bonod N; Bidault S
    ACS Nano; 2021 Sep; 15(9):14732-14743. PubMed ID: 34469108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic library based on substrate-supported gradiential plasmonic arrays.
    Müller MB; Kuttner C; König TA; Tsukruk VV; Förster S; Karg M; Fery A
    ACS Nano; 2014 Sep; 8(9):9410-21. PubMed ID: 25137554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.