These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25347301)

  • 1. Fullerenes generated from porous structures.
    Paupitz R; Junkermeier CE; van Duin AC; Branicio PS
    Phys Chem Chem Phys; 2014 Dec; 16(46):25515-22. PubMed ID: 25347301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of B12N12 fullerenes on graphene and boron nitride nanosheets: A DFT study.
    Escobar JC; Villanueva MS; Hernández AB; Cortés-Arriagada D; Anota EC
    J Mol Graph Model; 2019 Jan; 86():27-34. PubMed ID: 30321754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes.
    Wang Q; Sun Q; Jena P; Kawazoe Y
    J Chem Theory Comput; 2009 Feb; 5(2):374-9. PubMed ID: 26610111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene.
    Manna AK; Pati SK
    Chemphyschem; 2013 Jun; 14(9):1844-52. PubMed ID: 23616400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron-double-ring sheet, fullerene, and nanotubes: potential hydrogen storage materials.
    Wang J; Zhao HY; Liu Y
    Chemphyschem; 2014 Nov; 15(16):3453-9. PubMed ID: 25139442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topologically closed macromolecules made of single walled carbon nanotubes-'super'-fullerenes.
    Coluci VR; dos Santos RP; Galvão DS
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4378-83. PubMed ID: 21128429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From small fullerenes to the graphene limit: A harmonic force-field method for fullerenes and a comparison to density functional calculations for Goldberg-Coxeter fullerenes up to C980.
    Wirz LN; Tonner R; Hermann A; Sure R; Schwerdtfeger P
    J Comput Chem; 2016 Jan; 37(1):10-7. PubMed ID: 25821044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Investigation of Molecular and Electronic Structures of Buckminsterfullerene-Silicon Quantum Dot Systems.
    Fedorov AS; Kuzubov AA; Kholtobina AS; Kovaleva EA; Knaup J; Irle S
    J Phys Chem A; 2016 Dec; 120(49):9767-9775. PubMed ID: 27973813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting activation of oxygen molecules on C60 fullerene by boron doping.
    Li QZ; Zheng JJ; Dang JS; Zhao X
    Chemphyschem; 2015 Feb; 16(2):390-5. PubMed ID: 25399745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of silicon-doped C60 dimers.
    Marcos PA; Alonso JA; López MJ
    J Chem Phys; 2007 Jan; 126(4):044705. PubMed ID: 17286497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. M4 @Si28 (M=Al,Ga): metal-encapsulated tetrahedral silicon fullerene.
    Gao Y; Zeng XC
    J Chem Phys; 2005 Nov; 123(20):204325. PubMed ID: 16351274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of highly OH-covered C60 fullerenes: role of coadsorbed O impurities and of the charge state of the cage in the formation of carbon-opened structures.
    Rodríguez-Zavala JG; Guirado-López RA
    J Phys Chem A; 2006 Aug; 110(30):9459-68. PubMed ID: 16869697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure.
    Gonzalez Szwacki N; Sadrzadeh A; Yakobson BI
    Phys Rev Lett; 2007 Apr; 98(16):166804. PubMed ID: 17501448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first-principles study on three-dimensional covalently-bonded hexagonal boron nitride nanoribbons.
    Lee SH; Jhi SH
    J Phys Condens Matter; 2015 Feb; 27(7):075301. PubMed ID: 25629431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic study of rare gas atoms encapsulated in small fullerenes using dispersion corrected density functional theory.
    Sure R; Tonner R; Schwerdtfeger P
    J Comput Chem; 2015 Jan; 36(2):88-96. PubMed ID: 25503487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of collision dynamics of fullerenes on graphenylene and porous graphene membranes.
    Brandolt R; Paupitz R
    J Mol Graph Model; 2020 Nov; 100():107664. PubMed ID: 32731182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene.
    Srinivasan SG; van Duin AC; Ganesh P
    J Phys Chem A; 2015 Jan; 119(4):571-80. PubMed ID: 25562718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The leapfrog principle for boron fullerenes: a theoretical study of structure and stability of B112.
    Muya JT; Gopakumar G; Nguyen MT; Ceulemans A
    Phys Chem Chem Phys; 2011 Apr; 13(16):7524-33. PubMed ID: 21423936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and electronic structures of metal-substitutional fullerene C59Sm and metal-exohedral fullerenes C60Sm.
    Lu G; Deng K; Wu H; Yang J; Wang X
    J Chem Phys; 2006 Feb; 124(5):054305. PubMed ID: 16468867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.