These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25347381)

  • 1. Conformation modulated optical activity enhancement in chiral cysteine and au nanorod assemblies.
    Han B; Zhu Z; Li Z; Zhang W; Tang Z
    J Am Chem Soc; 2014 Nov; 136(46):16104-7. PubMed ID: 25347381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective circular dichroism sensing of cysteine and glutathione with gold nanorods.
    Zhu F; Li X; Li Y; Yan M; Liu S
    Anal Chem; 2015 Jan; 87(1):357-61. PubMed ID: 25483356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective and sensitive method for Cu
    Abbasi S; Khani H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Nov; 186():76-81. PubMed ID: 28614752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable optical activity of gold nanorod and chiral quantum dot assemblies.
    Zhu Z; Guo J; Liu W; Li Z; Han B; Zhang W; Tang Z
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13571-5. PubMed ID: 24346941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiroptical study of the bimetal-cysteine hybrid composite: interaction between cysteine and Au/Ag alloyed nanotubes.
    Liu H; Li Z; Yan Y; Zhao J; Wang Y
    Nanoscale; 2019 Nov; 11(45):21990-21998. PubMed ID: 31710078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonexclusive fluorescent sensing for L/D enantiomers enabled by dynamic nanoparticle-nanorod assemblies.
    Song L; Wang S; Kotov NA; Xia Y
    Anal Chem; 2012 Sep; 84(17):7330-5. PubMed ID: 22867025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement.
    Bao ZY; Dai J; Zhang Q; Ho KH; Li S; Chan CH; Zhang W; Lei DY
    Nanoscale; 2018 Nov; 10(42):19684-19691. PubMed ID: 30328878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids.
    Zheng G; Bao Z; Pérez-Juste J; Du R; Liu W; Dai J; Zhang W; Lee LYS; Wong KY
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16452-16457. PubMed ID: 30375752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.
    Zhai D; Wang P; Wang RY; Tian X; Ji Y; Zhao W; Wang L; Wei H; Wu X; Zhang X
    Nanoscale; 2015 Jun; 7(24):10690-8. PubMed ID: 26030276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core-shell interface of rod-shaped Au@Ag nanocrystals.
    Hou S; Yan J; Hu Z; Wu X
    Chem Commun (Camb); 2016 Feb; 52(10):2059-62. PubMed ID: 26687977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies.
    Li Z; Zhu Z; Liu W; Zhou Y; Han B; Gao Y; Tang Z
    J Am Chem Soc; 2012 Feb; 134(7):3322-5. PubMed ID: 22313383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of collective optical activity in one-dimensional plasmonic assembly.
    Zhu Z; Liu W; Li Z; Han B; Zhou Y; Gao Y; Tang Z
    ACS Nano; 2012 Mar; 6(3):2326-32. PubMed ID: 22324310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response.
    Hao C; Xu L; Ma W; Wang L; Kuang H; Xu C
    Small; 2014 May; 10(9):1805-12. PubMed ID: 24523129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry-Modulated Magnetoplasmonic Optical Activity of Au Nanorod-Based Nanostructures.
    Han B; Gao X; Shi L; Zheng Y; Hou K; Lv J; Guo J; Zhang W; Tang Z
    Nano Lett; 2017 Oct; 17(10):6083-6089. PubMed ID: 28953401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals.
    Querejeta-Fernández A; Chauve G; Methot M; Bouchard J; Kumacheva E
    J Am Chem Soc; 2014 Mar; 136(12):4788-93. PubMed ID: 24588564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organo-soluble chiral thiol-monolayer-protected gold nanorods.
    Li Y; Yu D; Dai L; Urbas A; Li Q
    Langmuir; 2011 Jan; 27(1):98-103. PubMed ID: 21142010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attomolar DNA detection with chiral nanorod assemblies.
    Ma W; Kuang H; Xu L; Ding L; Xu C; Wang L; Kotov NA
    Nat Commun; 2013; 4():2689. PubMed ID: 24162144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.
    Jiang Q; Liu Q; Shi Y; Wang ZG; Zhan P; Liu J; Liu C; Wang H; Shi X; Zhang L; Sun J; Ding B; Liu M
    Nano Lett; 2017 Nov; 17(11):7125-7130. PubMed ID: 28990389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity.
    Ni B; Mychinko M; Gómez-Graña S; Morales-Vidal J; Obelleiro-Liz M; Heyvaert W; Vila-Liarte D; Zhuo X; Albrecht W; Zheng G; González-Rubio G; Taboada JM; Obelleiro F; López N; Pérez-Juste J; Pastoriza-Santos I; Cölfen H; Bals S; Liz-Marzán LM
    Adv Mater; 2023 Jan; 35(1):e2208299. PubMed ID: 36239273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA induced intense plasmonic circular dichroism of highly purified gold nanobipyramids.
    Liu W; Liu D; Zhu Z; Han B; Gao Y; Tang Z
    Nanoscale; 2014 May; 6(9):4498-502. PubMed ID: 24647652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.