These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25347389)

  • 1. The thinnest molecular separation sheet by graphene gates of single-walled carbon nanohorns.
    Ohba T
    ACS Nano; 2014 Nov; 8(11):11313-9. PubMed ID: 25347389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of CO2-CH4 mixtures on defective single walled carbon nanohorns--tip does matter.
    Furmaniak S; Terzyk AP; Kowalczyk P; Kaneko K; Gauden PA
    Phys Chem Chem Phys; 2013 Oct; 15(39):16468-76. PubMed ID: 24002701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study.
    Jiao S; Xu Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9052-9. PubMed ID: 25868398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes.
    Shan M; Xue Q; Jing N; Ling C; Zhang T; Yan Z; Zheng J
    Nanoscale; 2012 Sep; 4(17):5477-82. PubMed ID: 22850863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely permeable porous graphene with high H
    Shimizu K; Ohba T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18201-18207. PubMed ID: 28675236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
    Wen B; Sun C; Bai B
    Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single- to Few-Layered, Graphene-Based Separation Membranes.
    Zhou F; Fathizadeh M; Yu M
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():17-39. PubMed ID: 29570357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene: powder, flakes, ribbons, and sheets.
    James DK; Tour JM
    Acc Chem Res; 2013 Oct; 46(10):2307-18. PubMed ID: 23276286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.
    Boutilier MS; Sun C; O'Hern SC; Au H; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2014 Jan; 8(1):841-9. PubMed ID: 24397398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone-Thrower-Wales (STW) and inverse Stone-Thrower-Wales (ISTW) defects.
    Lalitha M; Lakshmipathi S
    Phys Chem Chem Phys; 2017 Nov; 19(45):30895-30913. PubMed ID: 29134994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.
    Saleh M; Chandra V; Kemp KC; Kim KS
    Nanotechnology; 2013 Jun; 24(25):255702. PubMed ID: 23708437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-aligned fabrication of graphene RF transistors with T-shaped gate.
    Badmaev A; Che Y; Li Z; Wang C; Zhou C
    ACS Nano; 2012 Apr; 6(4):3371-6. PubMed ID: 22404336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Graphene-Based Membrane with pH-Responsive Gates for Advanced Molecular Separation.
    Zhang L; Ghaffar A; Zhu X; Chen B
    Environ Sci Technol; 2019 Sep; 53(17):10398-10407. PubMed ID: 31389235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics of CH
    Vekeman J; Faginas-Lago N; Lombardi A; Sánchez de Merás A; García Cuesta I; Rosi M
    Front Chem; 2019; 7():386. PubMed ID: 31214569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Based Membranes for Molecular Separation.
    Huang L; Zhang M; Li C; Shi G
    J Phys Chem Lett; 2015 Jul; 6(14):2806-15. PubMed ID: 26266866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.