These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25347594)

  • 21. How coalescing droplets jump.
    Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN
    ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study.
    Gao S; Liao Q; Liu W; Liu Z
    Langmuir; 2017 Oct; 33(43):12379-12388. PubMed ID: 28980811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Wettability-Induced Heat Transfer Enhancement for Condensation with NonCondensable Gas.
    Shen LY; Tang GH; Li Q; Shi Y
    Langmuir; 2019 Jul; 35(29):9430-9440. PubMed ID: 31282674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lattice Boltzmann Simulation of Droplets Impacting on Superhydrophobic Surfaces with Randomly Distributed Rough Structures.
    Yuan WZ; Zhang LZ
    Langmuir; 2017 Jan; 33(3):820-829. PubMed ID: 28036183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.
    Rykaczewski K
    Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D; Pinchasik BE
    J Colloid Interface Sci; 2023 Aug; 644():146-156. PubMed ID: 37105038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy.
    Ensikat HJ; Schulte AJ; Koch K; Barthlott W
    Langmuir; 2009 Nov; 25(22):13077-83. PubMed ID: 19899819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces.
    Song Z; Lu M; Chen X
    ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology-driven nonwettability of nanostructured BN surfaces.
    Pakdel A; Bando Y; Golberg D
    Langmuir; 2013 Jun; 29(24):7529-33. PubMed ID: 23560820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the effects of solid surfaces on ice nucleation.
    Li K; Xu S; Shi W; He M; Li H; Li S; Zhou X; Wang J; Song Y
    Langmuir; 2012 Jul; 28(29):10749-54. PubMed ID: 22741592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.