These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25347594)

  • 41. A Study of Drop-Microstructured Surface Interactions during Dropwise Condensation with Quartz Crystal Microbalance.
    Su J; Charmchi M; Sun H
    Sci Rep; 2016 Oct; 6():35132. PubMed ID: 27739452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Testing the performance of superhydrophobic aluminum surfaces.
    Ruiz-Cabello FJM; Ibáñez-Ibáñez PF; Gómez-Lopera JF; Martínez-Aroza J; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2017 Dec; 508():129-136. PubMed ID: 28822862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lattice Boltzmann method for dynamic wetting problems.
    Attar E; Körner C
    J Colloid Interface Sci; 2009 Jul; 335(1):84-93. PubMed ID: 19409571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth Rates and Spontaneous Navigation of Condensate Droplets Through Randomly Structured Textures.
    Sharma CS; Combe J; Giger M; Emmerich T; Poulikakos D
    ACS Nano; 2017 Feb; 11(2):1673-1682. PubMed ID: 28170223
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Shape of Heavy Droplets on Superhydrophobic Surfaces.
    Yu Y; Lv C; Wang L; Li P
    ACS Omega; 2020 Oct; 5(41):26732-26737. PubMed ID: 33110999
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable Water Harvesting Surfaces Consisting of Biphilic Nanoscale Topography.
    Hou Y; Shang Y; Yu M; Feng C; Yu H; Yao S
    ACS Nano; 2018 Nov; 12(11):11022-11030. PubMed ID: 30346698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toward Condensation-Resistant Omniphobic Surfaces.
    Wilke KL; Preston DJ; Lu Z; Wang EN
    ACS Nano; 2018 Nov; 12(11):11013-11021. PubMed ID: 30299928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces.
    Han T; Choi Y; Kwon JT; Kim MH; Jo H
    Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.
    Lv C; Hao P; Zhang X; He F
    ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets.
    Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.
    Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W
    Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.
    Feng J; Qin Z; Yao S
    Langmuir; 2012 Apr; 28(14):6067-75. PubMed ID: 22424422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical investigation of vibration-induced droplet shedding on microstructured superhydrophobic surfaces.
    Moradi M; Rahimian MH; Chini SF
    Phys Rev E; 2019 Jun; 99(6-1):063111. PubMed ID: 31330646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Dynamics Simulation of the Influence of Nanoscale Structure on Water Wetting and Condensation.
    Hiratsuka M; Emoto M; Konno A; Ito S
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.