These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 25347722)
1. Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Schaub NJ; Rende D; Yuan Y; Gilbert RJ; Borca-Tasciuc DA Chem Res Toxicol; 2014 Dec; 27(12):2023-35. PubMed ID: 25347722 [TBL] [Abstract][Full Text] [Related]
2. Triple Therapy of HER2 Zolata H; Afarideh H; Davani FA Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759 [TBL] [Abstract][Full Text] [Related]
3. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Talelli M; Rijcken CJ; Lammers T; Seevinck PR; Storm G; van Nostrum CF; Hennink WE Langmuir; 2009 Feb; 25(4):2060-7. PubMed ID: 19166276 [TBL] [Abstract][Full Text] [Related]
4. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field. Xia B; Huang L; Zhu L; Liu Z; Ma T; Zhu S; Huang J; Luo Z Int J Nanomedicine; 2016; 11():6727-6741. PubMed ID: 28003748 [TBL] [Abstract][Full Text] [Related]
5. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Marcos-Campos I; Asín L; Torres TE; Marquina C; Tres A; Ibarra MR; Goya GF Nanotechnology; 2011 May; 22(20):205101. PubMed ID: 21444956 [TBL] [Abstract][Full Text] [Related]
6. Accumulation of iron oxide nanoparticles by cultured brain astrocytes. Geppert M; Hohnholt M; Gaetjen L; Grunwald I; Bäumer M; Dringen R J Biomed Nanotechnol; 2009 Jun; 5(3):285-93. PubMed ID: 20055010 [TBL] [Abstract][Full Text] [Related]
7. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Geppert M; Hohnholt MC; Thiel K; Nürnberger S; Grunwald I; Rezwan K; Dringen R Nanotechnology; 2011 Apr; 22(14):145101. PubMed ID: 21346306 [TBL] [Abstract][Full Text] [Related]
8. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. Hayashi K; Ono K; Suzuki H; Sawada M; Moriya M; Sakamoto W; Yogo T ACS Appl Mater Interfaces; 2010 Jul; 2(7):1903-11. PubMed ID: 20568697 [TBL] [Abstract][Full Text] [Related]
9. Recent Developments of Magnetic Nanoparticles for Theranostics of Brain Tumor. Shevtsov M; Multhoff G Curr Drug Metab; 2016; 17(8):737-744. PubMed ID: 27280470 [TBL] [Abstract][Full Text] [Related]
10. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging. Zhao L; Zheng Y; Yan H; Xie W; Sun X; Li N; Tang J J Nanosci Nanotechnol; 2016 Mar; 16(3):2401-7. PubMed ID: 27455648 [TBL] [Abstract][Full Text] [Related]
11. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells. Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525 [TBL] [Abstract][Full Text] [Related]
12. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Subbiahdoss G; Sharifi S; Grijpma DW; Laurent S; van der Mei HC; Mahmoudi M; Busscher HJ Acta Biomater; 2012 Jul; 8(6):2047-55. PubMed ID: 22406508 [TBL] [Abstract][Full Text] [Related]
13. (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. Shi Z; Neoh KG; Kang ET; Shuter B; Wang SC; Poh C; Wang W ACS Appl Mater Interfaces; 2009 Feb; 1(2):328-35. PubMed ID: 20353220 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. Park H; Park HJ; Kim JA; Lee SH; Kim JH; Yoon J; Park TH J Microbiol Methods; 2011 Jan; 84(1):41-5. PubMed ID: 20971135 [TBL] [Abstract][Full Text] [Related]
15. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808 [TBL] [Abstract][Full Text] [Related]
17. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Tai LA; Tsai PJ; Wang YC; Wang YJ; Lo LW; Yang CS Nanotechnology; 2009 Apr; 20(13):135101. PubMed ID: 19420485 [TBL] [Abstract][Full Text] [Related]
18. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field]. Liu X; Xu B; Xia QS; Zhao TD; Tang JT Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444 [TBL] [Abstract][Full Text] [Related]
19. Fixed bed reactor for solid-phase surface derivatization of superparamagnetic nanoparticles. Steitz B; Salaklang J; Finka A; O'Neil C; Hofmann H; Petri-Fink A Bioconjug Chem; 2007; 18(5):1684-90. PubMed ID: 17718533 [TBL] [Abstract][Full Text] [Related]
20. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Shanehsazzadeh S; Lahooti A; Hajipour MJ; Ghavami M; Azhdarzadeh M Colloids Surf B Biointerfaces; 2015 Dec; 136():1107-12. PubMed ID: 26613856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]