These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 25347874)

  • 1. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms.
    Blanco PJ; Watanabe SM; Dari EA; Passos MA; Feijóo RA
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1303-30. PubMed ID: 24682727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a patient-specific one-dimensional model of the systemic arterial tree.
    Reymond P; Bohraus Y; Perren F; Lazeyras F; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1173-82. PubMed ID: 21622820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of vascular territory resistances in one-dimensional hemodynamics simulations.
    Blanco PJ; Watanabe SM; Feijóo RA
    J Biomech; 2012 Aug; 45(12):2066-73. PubMed ID: 22771032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of blood flow in the mesenteric arterial system.
    Mabotuwana TD; Cheng LK; Pullan AJ
    Biomed Eng Online; 2007 May; 6():17. PubMed ID: 17484787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anharmonic analysis of arterial blood pressure and flow pulses.
    Voltairas PA; Fotiadis DI; Massalas CV; Michalis LK
    J Biomech; 2005 Jul; 38(7):1423-31. PubMed ID: 15922753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of blood flow in arterial trees.
    Anor T; Grinberg L; Baek H; Madsen JR; Jayaraman MV; Karniadakis GE
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(5):612-623. PubMed ID: 20836052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-optimization of vascular trees.
    Schreiner W; Buxbaum PF
    IEEE Trans Biomed Eng; 1993 May; 40(5):482-91. PubMed ID: 8225337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure.
    Ellwein LM; Tran HT; Zapata C; Novak V; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):94-108. PubMed ID: 18080757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer modeling of the human systemic arterial tree.
    Snyder MF; Rideout VC; Hillestad RJ
    J Biomech; 1968 Dec; 1(4):341-53. PubMed ID: 16329438
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.