These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25347956)

  • 1. Electron transport in all-carbon molecular electronic devices.
    McCreery R; Bergren A; Morteza-Najarian A; Sayed SY; Yan H
    Faraday Discuss; 2014; 172():9-25. PubMed ID: 25347956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-based materials in electrochemistry.
    Chen D; Tang L; Li J
    Chem Soc Rev; 2010 Aug; 39(8):3157-80. PubMed ID: 20589275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers.
    Chen S; Liu Y; Chen J
    Chem Soc Rev; 2014 Aug; 43(15):5372-86. PubMed ID: 24871071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundament and Application of Graphdiyne in Electrochemical Energy.
    Du Y; Zhou W; Gao J; Pan X; Li Y
    Acc Chem Res; 2020 Feb; 53(2):459-469. PubMed ID: 32022537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concluding remarks: there's nowt so queer as carbon electrodes.
    Unwin PR
    Faraday Discuss; 2014; 172():521-32. PubMed ID: 25370450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.
    Banks CE; Davies TJ; Wildgoose GG; Compton RG
    Chem Commun (Camb); 2005 Feb; (7):829-41. PubMed ID: 15700054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transport in single molecules: from benzene to graphene.
    Chen F; Tao NJ
    Acc Chem Res; 2009 Mar; 42(3):429-38. PubMed ID: 19253984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon.
    Wong CH; Ambrosi A; Pumera M
    Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical properties of oxygenated cup-stacked carbon nanofiber-modified electrodes.
    Ko S; Tatsuma T; Sakoda A; Sakai Y; Komori K
    Phys Chem Chem Phys; 2014 Jun; 16(24):12209-13. PubMed ID: 24817367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.
    Zhou M; Guo J; Guo LP; Bai J
    Anal Chem; 2008 Jun; 80(12):4642-50. PubMed ID: 18476717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Based Molecular Junctions for Practical Molecular Electronics.
    McCreery RL
    Acc Chem Res; 2022 Oct; 55(19):2766-2779. PubMed ID: 36137180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics.
    Sgobba V; Guldi DM
    Chem Soc Rev; 2009 Jan; 38(1):165-84. PubMed ID: 19088972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.