These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 25348004)
1. Harvesting vibrational energy using material work functions. Varpula A; Laakso SJ; Havia T; Kyynäräinen J; Prunnila M Sci Rep; 2014 Oct; 4():6799. PubMed ID: 25348004 [TBL] [Abstract][Full Text] [Related]
2. Spray-coated electret materials with enhanced stability in a harsh environment for an MEMS energy harvesting device. Luo A; Xu Y; Zhang Y; Zhang M; Zhang X; Lu Y; Wang F Microsyst Nanoeng; 2021; 7():15. PubMed ID: 34567730 [TBL] [Abstract][Full Text] [Related]
3. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators. Harne RL J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465 [TBL] [Abstract][Full Text] [Related]
4. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion. Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic MEMS Vibration Energy Harvesters inside of Tire Treads. Naito Y; Uenishi K Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795502 [TBL] [Abstract][Full Text] [Related]
6. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Wang P; Du H Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403 [TBL] [Abstract][Full Text] [Related]
7. Analysis and Characterization of Optimized Dual-Frequency Vibration Energy Harvesters for Low-Power Industrial Applications. Bouhedma S; Hu S; Schütz A; Lange F; Bechtold T; Ouali M; Hohlfeld D Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888895 [TBL] [Abstract][Full Text] [Related]
8. MEMS vibrational energy harvesters. Toshiyoshi H; Ju S; Honma H; Ji CH; Fujita H Sci Technol Adv Mater; 2019; 20(1):124-143. PubMed ID: 30815044 [TBL] [Abstract][Full Text] [Related]
9. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076 [TBL] [Abstract][Full Text] [Related]
10. Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response. Gratuze M; Alameh AH; Nabki F Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344792 [TBL] [Abstract][Full Text] [Related]
11. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response. Feng H; Bu L; Li Z; Xu S; Hu B; Xu M; Jiang S; Wang X Microsyst Nanoeng; 2023; 9():33. PubMed ID: 36969966 [TBL] [Abstract][Full Text] [Related]
12. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Lee YJ; Qi Y; Zhou G; Lua KB Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701 [TBL] [Abstract][Full Text] [Related]
13. Buckled MEMS Beams for Energy Harvesting from Low Frequency Vibrations. Xu R; Akay H; Kim SG Research (Wash D C); 2019; 2019():1087946. PubMed ID: 31549042 [TBL] [Abstract][Full Text] [Related]
14. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester. Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095 [TBL] [Abstract][Full Text] [Related]
15. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester. Li M; Deng H; Zhang Y; Li K; Huang S; Liu X Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547 [TBL] [Abstract][Full Text] [Related]
16. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes. Yu H; Yue Q; Zhou J; Wang W Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054 [TBL] [Abstract][Full Text] [Related]
17. Performance of An Electromagnetic Energy Harvester with Linear and Nonlinear Springs under Real Vibrations. Phan TN; Bader S; Oelmann B Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977507 [TBL] [Abstract][Full Text] [Related]
18. A Contact-Mode Triboelectric Nanogenerator for Energy Harvesting from Marine Pipe Vibrations. Li R; Zhang H; Wang L; Liu G Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671656 [TBL] [Abstract][Full Text] [Related]
19. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters. Thainiramit P; Yingyong P; Isarakorn D Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291 [TBL] [Abstract][Full Text] [Related]
20. Microfabrication and integration of a sol-gel PZT folded spring energy harvester. Lueke J; Badr A; Lou E; Moussa WA Sensors (Basel); 2015 May; 15(6):12218-41. PubMed ID: 26016911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]