BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25348067)

  • 1. MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis.
    Jia P; Wang Q; Chen Q; Hutchinson KE; Pao W; Zhao Z
    Genome Biol; 2014; 15(10):489. PubMed ID: 25348067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.
    Baeissa H; Benstead-Hume G; Richardson CJ; Pearl FMG
    Oncotarget; 2017 Mar; 8(13):21290-21304. PubMed ID: 28423505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity.
    Chang MT; Asthana S; Gao SP; Lee BH; Chapman JS; Kandoth C; Gao J; Socci ND; Solit DB; Olshen AB; Schultz N; Taylor BS
    Nat Biotechnol; 2016 Feb; 34(2):155-63. PubMed ID: 26619011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein domain-level landscape of cancer-type-specific somatic mutations.
    Yang F; Petsalaki E; Rolland T; Hill DE; Vidal M; Roth FP
    PLoS Comput Biol; 2015 Mar; 11(3):e1004147. PubMed ID: 25794154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and structure signatures of cancer mutation hotspots in protein kinases.
    Dixit A; Yi L; Gowthaman R; Torkamani A; Schork NJ; Verkhivker GM
    PLoS One; 2009 Oct; 4(10):e7485. PubMed ID: 19834613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Local Clusters of Mutation Hotspots in Cancer-Related Genes and Their Biological Relevance.
    Rhee JK; Yoo J; Kim KR; Kim J; Lee YJ; Chul Cho B; Kim TM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1656-1662. PubMed ID: 29993813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of mutation hotspots and their DNA sequence context specificity.
    Rogozin IB; Pavlov YI
    Mutat Res; 2003 Sep; 544(1):65-85. PubMed ID: 12888108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pan-cancer assessment of mutational landscape in intrinsically disordered hotspots reveals potential driver genes.
    Zou H; Pan T; Gao Y; Chen R; Li S; Guo J; Tian Z; Xu G; Xu J; Ma Y; Li Y
    Nucleic Acids Res; 2022 May; 50(9):e49. PubMed ID: 35061901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer.
    Shi MJ; Meng XY; Fontugne J; Chen CL; Radvanyi F; Bernard-Pierrot I
    Genome Med; 2020 Sep; 12(1):85. PubMed ID: 32988402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-driven approach for constructing mutation categories for mutational signature analysis.
    Gilad G; Leiserson MDM; Sharan R
    PLoS Comput Biol; 2021 Oct; 17(10):e1009542. PubMed ID: 34665813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational tools to detect signatures of mutational processes in DNA from tumours: A review and empirical comparison of performance.
    Omichessan H; Severi G; Perduca V
    PLoS One; 2019; 14(9):e0221235. PubMed ID: 31513583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data.
    Xia J; Wishart DS
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W71-7. PubMed ID: 20457745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures.
    Kumar S; Clarke D; Gerstein MB
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18962-18970. PubMed ID: 31462496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MutSignatures: an R package for extraction and analysis of cancer mutational signatures.
    Fantini D; Vidimar V; Yu Y; Condello S; Meeks JJ
    Sci Rep; 2020 Oct; 10(1):18217. PubMed ID: 33106540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MHIF-MSEA: a novel model of miRNA set enrichment analysis based on multi-source heterogeneous information fusion.
    Li J; Ma X; Lin H; Zhao S; Li B; Huang Y
    Front Genet; 2024; 15():1375148. PubMed ID: 38586586
    [No Abstract]   [Full Text] [Related]  

  • 18. Deep convolutional neural networks for accurate somatic mutation detection.
    Sahraeian SME; Liu R; Lau B; Podesta K; Mohiyuddin M; Lam HYK
    Nat Commun; 2019 Mar; 10(1):1041. PubMed ID: 30833567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hidden Markov models lead to higher resolution maps of mutation signature activity in cancer.
    Wojtowicz D; Sason I; Huang X; Kim YA; Leiserson MDM; Przytycka TM; Sharan R
    Genome Med; 2019 Jul; 11(1):49. PubMed ID: 31349863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.