BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 25348091)

  • 1. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfonation of 3,3'-Diformyl-BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water.
    Zhao F; Wang Y; Wu X; Yu S; Yu X; Pu L
    Chemistry; 2020 Jun; 26(32):7258-7262. PubMed ID: 32128894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilic Polymer-Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases.
    Nian S; Pu L
    Chemistry; 2017 Dec; 23(71):18066-18073. PubMed ID: 29069528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective Fluorescent Imaging of Free Amino Acids in Living Cells.
    Zeng C; Zhang X; Pu L
    Chemistry; 2017 Feb; 23(10):2432-2438. PubMed ID: 27911982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Fluorescence-Based High-Throughput Screening for Enantiomeric Excess in Amines and Amino Acid Derivatives.
    Shcherbakova EG; Brega V; Minami T; Sheykhi S; James TD; Anzenbacher P
    Chemistry; 2016 Jul; 22(29):10074-80. PubMed ID: 27271215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Determination of Concentration and Enantiomeric Composition of Amino Acids in Aqueous Solution by Using a Tetrabromobinaphthyl Dialdehyde Probe.
    Iqbal S; Yu S; Jiang L; Wang X; Chen Y; Wang Y; Yu X; Pu L
    Chemistry; 2019 Jul; 25(42):9967-9972. PubMed ID: 31056773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of enantiomeric excess and concentration of unprotected amino acids, amines, amino alcohols, and carboxylic acids by competitive binding assays with a chiral scandium complex.
    Mei X; Wolf C
    J Am Chem Soc; 2006 Oct; 128(41):13326-7. PubMed ID: 17031923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality sensing of amines, diamines, amino acids, amino alcohols, and α-hydroxy acids with a single probe.
    Bentley KW; Nam YG; Murphy JM; Wolf C
    J Am Chem Soc; 2013 Dec; 135(48):18052-5. PubMed ID: 24261969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric functional organozinc additions to aldehydes catalyzed by 1,1'-bi-2-naphthols (BINOLs).
    Pu L
    Acc Chem Res; 2014 May; 47(5):1523-35. PubMed ID: 24738985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General but discriminating fluorescent chemosensor for aliphatic amines.
    Lu G; Grossman JE; Lambert JB
    J Org Chem; 2006 Mar; 71(5):1769-76. PubMed ID: 16496960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair.
    Chen Y; Zhao F; Tian J; Jiang L; Lu K; Jiang Y; Li H; Yu S; Yu X; Pu L
    J Org Chem; 2021 Jul; 86(14):9603-9609. PubMed ID: 34165295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An advance on exploring N-tert-butanesulfinyl imines in asymmetric synthesis of chiral amines.
    Lin GQ; Xu MH; Zhong YW; Sun XW
    Acc Chem Res; 2008 Jul; 41(7):831-40. PubMed ID: 18533688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. R(-)-4-(3-Isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, a fluorescent chiral tagging reagent: sensitive resolution of chiral amines and amino acids by reversed-phase liquid chromatography.
    Toyo'oka T; Jin D; Tomoi N; Oe T; Hiranuma H
    Biomed Chromatogr; 2001 Feb; 15(1):56-67. PubMed ID: 11180302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.