BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 25348153)

  • 1. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment.
    Wang X; Sumida H; Cyster JG
    J Exp Med; 2014 Nov; 211(12):2351-9. PubMed ID: 25348153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation.
    Becker AM; Callahan DJ; Richner JM; Choi J; DiPersio JF; Diamond MS; Bhattacharya D
    PLoS One; 2015; 10(7):e0133854. PubMed ID: 26197390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment.
    Sumida H; Cyster JG
    Front Immunol; 2018; 9():660. PubMed ID: 29670628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Myc controls the development of CD8alphaalpha TCRalphabeta intestinal intraepithelial lymphocytes from thymic precursors by regulating IL-15-dependent survival.
    Jiang W; Ferrero I; Laurenti E; Trumpp A; MacDonald HR
    Blood; 2010 Jun; 115(22):4431-8. PubMed ID: 20308599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD8αα
    Takei Y; Nemoto Y; Morikawa R; Tanaka S; Oshima S; Nagaishi T; Okamoto R; Tsuchiya K; Nakamura T; Watanabe M
    Biochem Biophys Res Commun; 2020 Mar; 523(2):328-335. PubMed ID: 31864702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8 alpha alpha TCR alpha beta and TCR gamma delta intestinal intraepithelial lymphocytes.
    Yu Q; Tang C; Xun S; Yajima T; Takeda K; Yoshikai Y
    J Immunol; 2006 May; 176(10):6180-5. PubMed ID: 16670327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLAMF4 Is a Negative Regulator of Expansion of Cytotoxic Intraepithelial CD8+ T Cells That Maintains Homeostasis in the Small Intestine.
    O'Keeffe MS; Song JH; Liao G; De Calisto J; Halibozek PJ; Mora JR; Bhan AK; Wang N; Reinecker HC; Terhorst C
    Gastroenterology; 2015 May; 148(5):991-1001.e4. PubMed ID: 25678452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice.
    Kato-Nagaoka N; Shimada S; Yamakawa Y; Tsujibe S; Naito T; Setoyama H; Watanabe Y; Shida K; Matsumoto S; Nanno M
    Immunology; 2015 Sep; 146(1):59-69. PubMed ID: 25967857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamine modulates CD8αα(+) TCRαβ(+) intestinal intraepithelial lymphocyte expression in mice with polymicrobial sepsis.
    Tung JN; Lee WY; Pai MH; Chen WJ; Yeh CL; Yeh SL
    Nutrition; 2013 Jun; 29(6):911-7. PubMed ID: 23522839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β.
    Konkel JE; Maruyama T; Carpenter AC; Xiong Y; Zamarron BF; Hall BE; Kulkarni AB; Zhang P; Bosselut R; Chen W
    Nat Immunol; 2011 Apr; 12(4):312-9. PubMed ID: 21297643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gnotobiotic transgenic mouse model for studying interactions between small intestinal enterocytes and intraepithelial lymphocytes.
    Mysorekar IU; Lorenz RG; Gordon JI
    J Biol Chem; 2002 Oct; 277(40):37811-9. PubMed ID: 12138109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive phenotypic analysis of the gut intra-epithelial lymphocyte compartment: perturbations induced by acute reovirus 1/L infection of the gastrointestinal tract.
    Bharhani MS; Grewal JS; Peppler R; Enockson C; London L; London SD
    Int Immunol; 2007 Apr; 19(4):567-79. PubMed ID: 17369189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8αα(+) intraepithelial lymphocyte development.
    Klose CS; Blatz K; d'Hargues Y; Hernandez PP; Kofoed-Nielsen M; Ripka JF; Ebert K; Arnold SJ; Diefenbach A; Palmer E; Tanriver Y
    Immunity; 2014 Aug; 41(2):230-43. PubMed ID: 25148024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in intraepithelial lymphocytes in the proximal, middle, distal parts of small intestine, cecum, and colon of mice.
    Suzuki H
    Immunol Invest; 2009; 38(8):780-96. PubMed ID: 19860588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-canonicaly recruited TCRαβCD8αα IELs recognize microbial antigens.
    Wojciech L; Szurek E; Kuczma M; Cebula A; Elhefnawy WR; Pietrzak M; Rempala G; Ignatowicz L
    Sci Rep; 2018 Jul; 8(1):10848. PubMed ID: 30022086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. γδ Intraepithelial Lymphocyte Migration Limits Transepithelial Pathogen Invasion and Systemic Disease in Mice.
    Edelblum KL; Singh G; Odenwald MA; Lingaraju A; El Bissati K; McLeod R; Sperling AI; Turner JR
    Gastroenterology; 2015 Jun; 148(7):1417-26. PubMed ID: 25747597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late postnatal expansion of self-reactive CD8alphaalpha+ intestinal intraepithelial lymphocytes in mice.
    Podd BS; Aberg C; Christopher TL; Perez-Cano F; Camerini V
    Autoimmunity; 2004 Dec; 37(8):537-47. PubMed ID: 15763916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominant Negative FADD/MORT1 Inhibits the Development of Intestinal Intraepithelial Lymphocytes With a Marked Defect on CD8αα+TCRγδ+ T Cells.
    Zhang X; Huo L; Song L; Hu Z; Wang X; Han Y; Wang Y; Xu P; Zhang J; Hua ZC
    Front Immunol; 2018; 9():2038. PubMed ID: 30250469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cytokine producing activity of intestinal intraepithelial T cells from TCR beta-chain and delta-chain mutant mice.
    Kohyama M; Hachimura S; Nanno M; Ishikawa H; Kaminogawa S
    Microbiol Immunol; 1997; 41(4):353-9. PubMed ID: 9159410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of membrane phospholipid asymmetry by Notch-mediated flippase expression controls the number of intraepithelial TCRαβ+CD8αα+ T cells.
    Ishifune C; Tsukumo SI; Maekawa Y; Hozumi K; Chung DH; Motozono C; Yamasaki S; Nakano H; Yasutomo K
    PLoS Biol; 2019 May; 17(5):e3000262. PubMed ID: 31071093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.