BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25348290)

  • 1. Possible mechanism of antifungal phenazine-1-carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans.
    Tupe SG; Kulkarni RR; Shirazi F; Sant DG; Joshi SP; Deshpande MV
    J Appl Microbiol; 2015 Jan; 118(1):39-48. PubMed ID: 25348290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADP-dependent glutamate dehydrogenases in a dimorphic zygomycete Benjaminiella poitrasii: Purification, characterization and their evaluation as an antifungal drug target.
    Pathan EK; Kulkarni AM; Prasanna NVL; Ramana CV; Deshpande MV
    Biochim Biophys Acta Gen Subj; 2020 Nov; 1864(11):129696. PubMed ID: 32768460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biochemical correlate of dimorphism in a zygomycete Benjaminiella poitrasii: characterization of purified NAD-dependent glutamate dehydrogenase, a target for antifungal agents.
    Joshi CV; Pathan EK; Punekar NS; Tupe SG; Kapadnis BP; Deshpande MV
    Antonie Van Leeuwenhoek; 2013 Jul; 104(1):25-36. PubMed ID: 23588417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and Characterization of Chitosans from Different Fungi with Special Emphasis on Zygomycetous Dimorphic Fungus
    Mane S; Pathan E; Tupe S; Deshmukh S; Kale D; Ghormade V; Chaudhari B; Deshpande M
    Biomacromolecules; 2022 Mar; 23(3):808-815. PubMed ID: 35015505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.
    Morales DK; Grahl N; Okegbe C; Dietrich LE; Jacobs NJ; Hogan DA
    mBio; 2013 Jan; 4(1):e00526-12. PubMed ID: 23362320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular studies of NAD- and NADP-glutamate dehydrogenases decipher the conundrum of yeast-hypha dimorphism in zygomycete Benjaminiella poitrasii.
    Pathan EK; Ghormade V; Panwar SL; Prasad R; Deshpande MV
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31644791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca
    Tian J; Lu Z; Wang Y; Zhang M; Wang X; Tang X; Peng X; Zeng H
    Int J Biochem Cell Biol; 2017 Apr; 85():114-122. PubMed ID: 28213053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of antifungal phenazines from a fluorescent Pseudomonas strain FPO4 against medically important fungi.
    Gorantla JN; Kumar SN; Nisha GV; Sumandu AS; Dileep C; Sudaresan A; Kumar MM; Lankalapalli RS; Kumar BS
    J Mycol Med; 2014 Sep; 24(3):185-92. PubMed ID: 24746721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans.
    Phillips AJ; Sudbery I; Ramsdale M
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14327-32. PubMed ID: 14623979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melittin induces apoptotic features in Candida albicans.
    Park C; Lee DG
    Biochem Biophys Res Commun; 2010 Mar; 394(1):170-2. PubMed ID: 20188067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal Activity of Coumarin Against
    Jia C; Zhang J; Yu L; Wang C; Yang Y; Rong X; Xu K; Chu M
    Front Cell Infect Microbiol; 2018; 8():445. PubMed ID: 30662877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hibicuslide C-induced cell death in Candida albicans involves apoptosis mechanism.
    Hwang JH; Choi H; Kim AR; Yun JW; Yu R; Woo ER; Lee DG
    J Appl Microbiol; 2014 Nov; 117(5):1400-11. PubMed ID: 25176011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans.
    Kim N; Kim JK; Hwang D; Lim YH
    Med Mycol; 2013 Jan; 51(1):45-52. PubMed ID: 22662760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans.
    Hwang JH; Hwang IS; Liu QH; Woo ER; Lee DG
    Biochimie; 2012 Aug; 94(8):1784-93. PubMed ID: 22534194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of action of novel synthetic dodecapeptides against Candida albicans.
    Maurya IK; Thota CK; Sharma J; Tupe SG; Chaudhary P; Singh MK; Thakur IS; Deshpande M; Prasad R; Chauhan VS
    Biochim Biophys Acta; 2013 Nov; 1830(11):5193-203. PubMed ID: 23876294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of apigenin isolated from Aster yomena against Candida albicans: apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling.
    Lee W; Woo ER; Lee DG
    J Ethnopharmacol; 2019 Mar; 231():19-28. PubMed ID: 30408533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.
    Shirazi F; Kontoyiannis DP
    Virulence; 2015; 6(4):385-94. PubMed ID: 26065323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans.
    Seong M; Lee DG
    Microbiol Res; 2018 Mar; 207():33-40. PubMed ID: 29458866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans.
    Wu XZ; Cheng AX; Sun LM; Sun SJ; Lou HX
    Biochim Biophys Acta; 2009 Aug; 1790(8):770-7. PubMed ID: 19446008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans.
    Lam M; Jou PC; Lattif AA; Lee Y; Malbasa CL; Mukherjee PK; Oleinick NL; Ghannoum MA; Cooper KD; Baron ED
    Photochem Photobiol; 2011; 87(4):904-9. PubMed ID: 21521233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.