These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25348654)

  • 1. Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.
    Wang T; Sun J; Yuan J
    Bioprocess Biosyst Eng; 2015 Apr; 38(4):605-14. PubMed ID: 25348654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-L-gulonic acid.
    Cai L; Yuan MQ; Li ZJ; Chen JC; Chen GQ
    J Biotechnol; 2012 Jan; 157(2):320-5. PubMed ID: 22192513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Enhancing 2-keto-L-gulonic acid production under hyperosmotic stress by adding sucrose].
    Chen K; Zhou J; Liu L; Liu J; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2010 Nov; 26(11):1507-13. PubMed ID: 21284211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione enhances 2-keto-l-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663.
    Huang Z; Zou W; Liu J; Liu L
    J Biotechnol; 2013 Apr; 164(4):454-60. PubMed ID: 23376843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy.
    Yang W; Sun H; Dong D; Ma S; Mandlaa ; Wang Z; Xu H
    Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous 2-Keto-L-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia.
    Takagi Y; Sugisawa T; Hoshino T
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):469-80. PubMed ID: 19902207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Enhancement of 2-keto-L-gulonic acid production using three-stage pH control strategy].
    Zhang J; Zhou J; Liu L; Liu J; Chen K; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1263-8. PubMed ID: 21141117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic analysis of the positive effects on Ketogulonigenium vulgare growth and 2-keto-L-gulonic acid production by reduced glutathione.
    Zhou J; Yi H; Wang L; Zhang W; Yuan YJ
    OMICS; 2012; 16(7-8):387-96. PubMed ID: 22734896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of 2-keto-gulonic acid yield by serial subcultivation of co-cultures of Bacillus cereus and Ketogulonicigenium vulgare.
    Zou Y; Hu M; Lv Y; Wang Y; Song H; Yuan YJ
    Bioresour Technol; 2013 Mar; 132():370-3. PubMed ID: 23218663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, mechanism and regulation of an artificial microbial ecosystem for vitamin C production.
    Zou W; Liu L; Chen J
    Crit Rev Microbiol; 2013 Aug; 39(3):247-55. PubMed ID: 22994289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation.
    Liu L; Chen K; Zhang J; Liu J; Chen J
    J Biotechnol; 2011 Dec; 156(3):182-7. PubMed ID: 21924300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-helper-strain co-culture system: a novel method for enhancement of 2-keto-L-gulonic acid production.
    Mandlaa ; Yang W; Han L; Wang Z; Xu H
    Biotechnol Lett; 2013 Nov; 35(11):1853-7. PubMed ID: 23881329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium.
    Chen S; Jia N; Ding MZ; Yuan YJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1507-1516. PubMed ID: 27565673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of an industrial-scale fed-batch fermentation simulation.
    Goldrick S; Ştefan A; Lovett D; Montague G; Lennox B
    J Biotechnol; 2015 Jan; 193():70-82. PubMed ID: 25449107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of amino acid biosynthetic pathways increases the productivity of 2-keto-L-gulonic acid in Ketogulonicigenium vulgare-Bacillus endophyticus consortium via genes screening.
    Pan CH; Wang EX; Jia N; Dong XT; Liu Y; Ding MZ; Yuan YJ
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1031-1040. PubMed ID: 28283955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model.
    Zou W; Zhou M; Liu L; Chen J
    J Biotechnol; 2013 Apr; 164(4):503-9. PubMed ID: 23454894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.
    Geng J; Yuan J
    Bioprocess Biosyst Eng; 2010 Aug; 33(6):665-74. PubMed ID: 19543751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production.
    Ye C; Zou W; Xu N; Liu L
    J Biotechnol; 2014 Jul; 182-183():61-7. PubMed ID: 24815194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation.
    Mandlaa ; Yang W; Liu C; Xu H
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):897-904. PubMed ID: 25860124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation.
    Wang EX; Liu Y; Ma Q; Dong XT; Ding MZ; Yuan YJ
    Biotechnol Lett; 2019 Sep; 41(8-9):951-961. PubMed ID: 31278569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.